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A HIGHER-ORDER DIFFERENTIAL CORRECTION SCHEME FOR
THE TWO-POINT BOUNDARY VALUE PROBLEM

Sharad Sharan*, Roshan T. Eapen†, Puneet Singla‡, Robert G. Melton§

The conventional differential corrections approach for solving two-point boundary
value problems (TPBVP) using Newton’s method has several limitations, such as
slow convergence rates, limited validity regions, and sensitivity to initial guesses.
This paper proposes an alternative fourth-order iterative scheme, inspired by the
super-Halley method, for solving TPBVPs. This approach utilizes higher-order
state transition tensors computed using an efficient data-driven technique, that
involves optimal sampling in a domain around a reference trajectory, to obtain
a polynomial model for differential corrections. Improved robustness, reduced
computational cost, and simplicity of implementation are demonstrated using ex-
amples.

INTRODUCTION

Two-Point Boundary Value Problems (TPBVPs) are often encountered in several engineering
disciplines. In astrodynamics, a classic example is the Lambert problem, that seeks a path connect-
ing two fixed points in a given amount of time is sought.1 Indirect methods to approach an optimal
control problem tend to reduce it to a TPBVP, following the derivation of the state and co-state equa-
tions.2 For most nonlinear systems, an analytical solution to this problem does not exist, and one
has to resort to iterative numerical methods to solve the TPBVP.2–4 One such method is differential
correction (DC),2, 5 also known as the shooting method.

The DC scheme has been used in various applications in astrodynamics, for example, the deter-
mination of periodic orbits6–8 in the Circular Restricted three Body Problem (CR3BP), low-thrust
spacecraft trajectory targeting,9 station-keeping for geostationary spacecraft,10 and spacecraft for-
mation flying,11 to name a few. In the DC process, the state dynamical equations are integrated using
an initial guess for the unknown states and parameters. The terminal conditions are then defined in
terms of an objective function, such that a root of that function indicates a satisfactory solution to
the TPBVP. Determining the root of a nonlinear function necessitates an iterative numerical scheme.
The nature of the iterative scheme determines the quality of the correction step.

The iterative scheme generally employed in the DC process is Newton’s method.12 It has quadratic
convergence, and is often the preferred method for use in the DC process. This preference is due
to the fact that the Newton’s scheme only requires first-order sensitivities of the terminal conditions
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with respect to the initial guess. Determining these sensitivities involves the computation of partial
derivatives of the system dynamics with respect to the unknown initial states and parameters, which
may not always be readily available. Determining first-order sensitivities may itself prove to be
an arduous task for dynamical systems. Therefore, alternate iterative schemes employing higher-
order sensitivities, which require higher-order partial derivatives, are seldom used on grounds of
practicality.

However, an issue with using Newton’s scheme in a DC process lies in the fact that the correction
step is derived from a linear Taylor series approximation of the nonlinear function around the initial
guess. It is illustrated later in the paper that the linear Taylor series approximation about any refer-
ence is only valid for a very small region around the reference. Thus, in order for a good correction
step that subsequently leads to the root of the aforementioned objective function, the initial guess
must be close enough to the actual solution. This makes the Newton’s scheme highly sensitive to
the initial guess. In the context of a TPBVP, at times, the unknown initial conditions and parameters
may not yield appropriate physical intuition for one to make an educated initial guess.

In order to tackle this problem of coming up with a good initial guess, heuristic methods are
often used,13 a well renowned one being the particle swarm optimization technique.14, 15 In such
cases, a candidate solution is sought within a given range for each unknown initial guess through
random initialization and subsequent propagation to check if terminal conditions are being satisfied.
Given a large pool of randomized initial guess samples, some samples are bound to converge to a
solution within a specified tolerance. Note that the heuristic methods demand a lot of computational
power, and is heavily dependent on the desired tolerance for the solutions being sought by such
methods. Since the Newton’s method has stringent requirements on the quality of the initial guess,
the aforementioned tolerance for the heuristic method must be sufficiently low in order to generate
a good initial guess for the Newton’s method to work with. A consequence of low tolerance is high
computation cost.

On the other hand, the stringent requirement of a high-quality initial guess can be reduced by
employing correction schemes that use higher-order sensitivities, that in turn are more robust to
the initial guess. However, recall that obtaining higher-order sensitivities is challenging, therefore
returning us to the very reason why Newton’s method is widely preferred. The challenge of em-
ploying higher-order iterative schemes for a relaxed initial guess, coupled with the computational
cost of heuristic methods to generate a good initial guess for the Newton’s scheme, form a notorious
loop that is difficult to break. The undoing of this loop in its entirety is the goal of this paper. This
goal is approached by defining two objectives.

The first objective seeks to derive a higher-order correction scheme applicable to the DC process,
that is more robust to the initial guess than the conventional Newton’s method. Newton’s method
only uses first-order sensitivities. A well-known scheme that uses second-order sensitivities is the
Halley’s method,16 which exhibits third-order convergence.17 Several modifications to the Halley’s
scheme have been explored, like the super-Halley method,18 followed by a variant of super-Halley
with fourth-order convergence.19 However, methods using third-order sensitivities are rarely inves-
tigated, as the cost of evaluating third-order partial derivatives is much too high for any meaningful
reward in terms of computation. In this work, an iterative scheme that uses fourth-order sensitivity
information is proposed, inspired by the derivation of Halley’s method. This scheme allows one
to come up with an initial guess that is not very close to the actual solution, yet converges to the
solution by using fourth-order sensitivity information at subsequent iteration points.
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The second objective seeks to address the computational aspect of implementing the proposed
higher-order correction scheme. Recall that the major impediment is the evaluation of partial deriva-
tives in order to determine the appropriate sensitivities to effect the higher-order correction. In this
paper, a derivative-free, stochastic approach is employed to determine these higher-order sensitiv-
ities in a given domain. First, a domain is defined around the reference trajectory’s parameters
of interest at the initial time. A deterministic sampling of the domain is performed using Con-
jugate Unscented Transform (CUT) points. CUT has been demonstrated to efficiently capture the
characteristics of a domain with good accuracy,20 and has been applied to various problems success-
fully.21–24 The parameters of interest at the final time are evaluated for the sampled initial points,
using which a least-squares approach is adopted to fit a polynomial model to the sampled data. This
polynomial model maps the final state and parameters to the initial state and parameters, and is
valid in the aforementioned domain. The coefficients of the polynomial model are nothing but the
different sensitivities of the system that one needs in order to perform a DC process. The order of
the sensitivities depends upon the order of the polynomial model. A detailed implementation of this
procedure is discussed in the methodology section. Thus, the higher-order sensitivities are obtained
in a computationally efficient manner without need for knowledge of any partial derivatives.

For convenience, the aforementioned higher-order sensitivities are referred to as CUT-STT hence-
forth in the paper. Note that although it is termed as the CUT-STT, it involves the sensitivities of
other parameters in the system in addition to the states. Therefore, it is not a direct equivalent to
the State Transition Tensor (STT), which only involves the sensitivities of the states of the sys-
tem between two given time instances. These CUT-STTs have been demonstrated to work well in
the context of uncertainty propagation in the CR3BP.25 They are employed in this paper to tackle
the aforementioned impediment of computational burden in using higher-order schemes in the DC
process.

The paper is organized as follows. First, a description of the TPBVP is provided to describe
the issues associated with it, followed by a detailed motivation for the current research objectives.
Following this, traditional methods of DC that are employed to address a TPBVP are discussed,
before elaborating on the higher-order scheme proposed in this work. Subsequently, the CUT-STT,
which alleviates the computational difficulty associated with the implementation of the higher-order
scheme, is discussed. The higher-order scheme and the CUT-STT are then combined, and applied
to a few well-known problems to demonstrate their advantages, and address the disadvantages.

PROBLEM STATEMENT

Consider a dynamical system of the form

ẋ = f [t,x(t),η] (1)

where x is an n-dimensional vector of the states of the system, and η is a vector of additional
parameters dictating system dynamics. A set of initial conditions is generally known based on the
problem specifications, i.e.,

xi(t0), for i = 1, 2, . . . n1 (2)

If n1 = n, then this constitutes a well-posed Initial Value Problem (IVP). However, based on the
problem characteristics, one does not always end up with an IVP. In addition to Eq. (2), the problem
may specify certain terminal conditions, given by

ψj(tf ,x(tf ),η), for j = 1, 2, . . . n2 (3)
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Some systems also possess certain states and parameters defined by algebraic functions, thereby
giving rise to Differential Algebraic Equation (DAE) systems. The knowledge of certain boundary
conditions at the initiation of the integration, and the rest at its termination, constitutes what is
known as the TPBVP, given by Eqs. (1) - (3). For the TPBVP to be well-posed, n1 + n2 = n.

Apart from a few simple problems, solving a TPBVP is generally quite challenging.26 Several
numerical techniques exist for solving a TPBVP.2–4 This paper is concerned with the method of
DC.2, 5

Differential Correction

The DC process begins by assuming guesses for the unknown initial conditions of the TPBVP,
thereby formulating an IVP. The guess is usually made for unknown parameters, or states, or both at
the initial time, and the dynamics is propagated to the final time. Note that there are problems where
the final time (tf ) is not known, and tf becomes one of the parameters that one needs to solve for
in the TPBVP. In such cases, time is non-dimensionalized by defining τ = t

tf
, and the integration

is carried out for 0 < τ < 1. The dynamical equations are modified appropriately to reflect τ as the
independent variable.

The guessed initial conditions and parameters which are to be corrected at each iteration are
referred to as the design variables (θ). With the known initial conditions and the guessed design
variables, one can propagate the system dynamics using Eq. (1) to the final time. At the end
of the integration, the error between the obtained terminal conditions corresponding to the design
variables, and the required terminal conditions dictated by the TPBVP is calculated. The goal of
DC is to drive this error to zero, theoretically, through successive corrections applied to the guess
variables. This error can be written as an objective function defined at tf ,27

F(θ) = ψ(tf ,θ)−ψdesired (4)

where ψ(tf ,θ) represents the terminal conditions obtained as a function of the design variables θ,
and ψdesired is given by Eq. (3). Now, a numerical root-finding scheme is required to find θ such
that F(θ) = 0.

A commonly used iterative scheme in DC is the Newton’s method, which has quadratic conver-
gence.12 In order to find a solution to any F (θ) = 0, Newton’s iterative method can be derived from
a first-order Taylor series expansion of F (θ) about any guessed value of θ. Consider the difference
between this guess value and the actual root to be δθ. Using a first-order Taylor series expansion,
one can solve for this δθ, in order to theoretically arrive at the actual root.

Let θ∗ = θ + δθ be a root of F (θ). Applying a Taylor expansion up to the first-order,

F (θ + δθ) = F (θ) + F ′(θ)δθ (5)

where the required first-order derivative is given by

F ′
ij(θ) =

∂Fi(θ)

∂θj
i, j = 1 . . . n (6)

where n is the dimension of the system. However, θ + δθ is assumed to be a root, therefore
F (θ + δθ) = 0. Eq. (5) now becomes

0 = F (θ) + F ′(θ)δθ (7)

=⇒ δθ = −[F ′(θ)]−1F (θ) (8)
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The issue with this however, is the fact that a first-order Taylor series expansion is simply an ap-
proximation of the actual nonlinear function, valid in a small neighborhood around the guess value
of θ. Therefore, simply adding δθ to θ only yields the root of the linear approximation. A simple
solution to this issue is to use the approximated root as a new guess, and find the roots of successive
linear approximations iteratively, until the approximated root converges to the actual root. This is
the essence of the Newton’s root-finding algorithm, given by

θp+1 = θp − [F ′(θp)]
−1F (θp) (9)

where p is the iteration index. Note that when applied to the DC process under discussion, Eq. (6)
is essentially a matrix of first-order sensitivity of the terminal condition to the initial guess. The
determination of this sensitivity is later discussed in detail.

Now, the updated initial design variables given by Eq. (9) are used to solve a new IVP, and the root
of the objective function given in Eq. (4) is evaluated again. Since the updates were effected using
a linear approximation, the desired terminal condition is seldom satisfied after just one iteration of
the process. Therefore, this process is performed repeatedly until |F(θ)| < ϵ for practical purposes,
where ϵ is a specified tolerance.

In summary, the steps involved in the DC process can be outlined as follows.28

1. Guess unknown initial conditions and parameters, θ = [x(t0),η] to formulate an IVP.

2. Propagate system dynamics from initial to final state using Eq. (1).

3. Calculate the error in terminal condition F(θ) using Eq. (4). Terminate process if |F(θ)| < ϵ.

4. Utilize Newton’s method to find a correction to the guessed design variables θ, using Eq. (8).
Use the new θ to set up a new IVP. Repeat steps 2− 4.

Since a linear approximation is assumed at each iteration to generate new guess variables, the
quality of the initial guess is of high importance, as the guess variables must lie within a reasonable
neighborhood of the actual root of F (θ). Depending on the quality of the initial guess, the DC
process may converge after a number of iterations, or diverge altogether. In order to demonstrate the
approximation qualities of different order approximations, let us consider a Taylor series expansion
of a simple univariate function,

g(x) = ex − 2x2 (10)

An mth order Taylor series expansion of this function is given by

g(x) =
m∑
i=0

g(i)(x∗)

i!
δxi (11)

where g(i)(x∗) refers to the ith derivative of g(x) evaluated at x∗. Approximations of Eq. (10) about
the reference point x∗ = 1, up to the seventh order, are illustrated in Fig. 1. Note that the first-order
approximation is only valid in a very small neighborhood around the reference point x∗ = 1. As
the approximation order increases, the size of the neighborhood where the approximation follows
the true nonlinear function also increases. Eventually, a seventh-order Taylor approximation was
found to exactly follow the example function g(x) in the interval illustrated in Fig. 1. This example
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Figure 1: Example of Taylor series approximations of varying orders

motivates the primary question addressed in this paper: if higher-order approximations are valid in
a larger neighborhood of the reference point (this is the initial guess in the context of a DC process),
why not use a higher-order iterative scheme in the DC process to obtain updates that are closer to
the actual root at each iteration, compared to the linear approximation in Newton’s method? This
leads to the first objective of this paper.

Objective 1 Derive a higher-order root-solving scheme for the DC process.

If one can formulate such a higher-order scheme, what are its pros and cons? Computational
tractability is an important factor when it comes to solving numerically challenging systems. Recall
that the traditional methodology to calculate higher-order sensitivities is a computationally expen-
sive task. This leads to the second objective.

Objective 2 Tackle the computational challenge of determining higher-order sensitivities, so that
implementation of the developed higher-order scheme is feasible.

The following section explores some conventional higher-order schemes from existing literature,
and outlines the proposed methodologies in this paper.

METHODOLOGY

Following the description of the DC process in the previous section, it is clear that the contri-
butions in this paper revolve around the root-finding portion of the DC process. To this end, some
commonly used iterative root-solving schemes are reviewed in the first part of this section. Follow-
ing this, the proposed fourth-order scheme is outlined, applied to a simple problem, and compared
with the traditional methods. In dynamical systems, higher-order iterative schemes are scarcely
preferred due to the high computational complexity of higher-order sensitivities necessary for the
DC process. However, we adopt a computationally inexpensive methodology of finding those sen-
sitivities, which ultimately opens the door to implementing higher-order schemes without much
computational effort. This methodology is outlined in the second subsection.
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Higher-order correction schemes

Beyond the Newton’s method, a well-known higher-order scheme is the Halley’s method,16 also
known as the method of tangent hyperbolas. In order to derive this method, the Taylor series expan-
sion given in Eq. (5) is extended to include the second derivative F ′′(θ).29

F (θ + δθ) = F (θ) + F ′(θ)δθ +
1

2
δθTF ′′(θ)δθ (12)

F ′′
ijk(θ) =

∂2Fi(θ)

∂θj∂θk
i, j, k = 1 . . . n (13)

Now, the goal is to determine a value for δθ, such that θ+δθ is a root of F . Thus, Eq. (12) becomes

0 = F (θ) + F ′(θ)δθ +
1

2
δθTF ′′(θ)δθ (14)

=⇒ −F (θ) =
[
F ′(θ) +

1

2
F ′′(θ)δθ

]
δθ (15)

Substituting Eq. (8) for the δθ within the bracket,

−F (θ) =
[
F ′(θ)− 1

2
F ′′(θ)[F ′(θ)]−1F (θ)

]
δθ (16)

∴ δθ = −
[
F ′(θ)− 1

2
F ′′(θ)F ′(θ)−1F (θ)

]−1

F (θ) (17)

where δθ is the Halley’s update. Note that (θ + δθ) is only an approximation of the root of a
second-order approximation of F , since it uses Newton’s update as an intermediary. Therefore,
similar to the Newton’s method, an iterative algorithm is required to converge on the root of the
actual nonlinear function F . Using Eq. (17), the Halley’s algorithm can be written as

θp+1 = θp −
[
F ′(θp)−

1

2
F ′′(θp)F

′(θp)
−1F (θp)

]−1

F (θp) (18)

Halley’s method has been shown to exhibit cubic convergence.17 Several variants of the Halley’s
method have been explored in literature, a notable one being the super-Halley method, given by18

θp+1 = θp −
[
I +

1

2
LF (θp)[I − LF (θp)]

−1

]
[F ′(θp)]

−1F (θp) (19)

LF (θp) = [F ′(θp)]
−1F ′′(θp)[F

′(θp)]
−1F (θp) (20)

A variant of the super-Halley method with fourth-order convergence can be found in literature.19, 30

In such a scheme, the operand of the F ′′(.) operator is modified within the LF (.) operator in Eq.
(20) as

LF (θp) = [F ′(θp)]
−1F ′′(up)[F

′(θp)]
−1F (θp) (21)

up = θp −
1

3
[F ′(θp)]

−1F (θp) (22)
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This fourth-order super-Halley method can be extended to utilize more information about the surface
in question, by including the third derivative of F (θ), given by

F ′′′
ijkq(θ) =

∂3Fi(θ)

∂θj∂θk∂θq
i, j, k, q = 1 . . . n (23)

The proposed scheme can be derived from a Taylor series expansion for F about one of its zeros,
similar to the derivation shown for the Halley’s method, and is given by

θp+1 = θp −B−1(θp)F (θp) (24)

B(θp) = F ′(θp) +
AT (θp)

6

[
3F ′′(θp) +AT (θp)F

′′′(θp)
]

(25)

A(θp) = −
[
F ′(θp)−

1

2
F ′′(θp)F

′(θp)
−1F (θp)

]−1

F (θp) (26)

Note that A(θp) is simply Halley’s update, which is used as an intermediate approximation, and
combined with the information provided by F ′′′(θp) to calculate the update term in the proposed
higher-order scheme given by Eq. (24). The proposed iterative scheme given by Eqs. (24) - (26)
is referred to as the Third-Order Root Solver (TORS). The nomenclature here reflects the highest-
order derivative of F (θ), third in this case, that one would require in order to implement the scheme
to find the root of F (θ). This should not be confused with the order of convergence of the scheme.

Having derived the TORS, a similar procedure can be applied to go one order higher than the
TORS, and utilize fourth-order derivative information given by

F
(iv)
ijkqr(θ) =

∂4Fi(θ)

∂θj∂θk∂θq∂θr
i, j, k, q, r = 1 . . . n (27)

The corresponding iterative scheme that uses F (iv)
ijkqr(θ) information can now be derived from a

fourth-order Taylor series expansion about the root, and is given by

θp+1 = θp − E−1(θp)F (θp) (28)

E(θp) = F ′(θp) +
DT (θp)

24

[
12F ′′(θp) + 4DT (θp)F

′′′(θp) +DT (θp)F
(iv)(θ)D(θp)

]
(29)

D(θp) = −B−1(θp)F (θp) (30)

whereB(θp) is given by Eq. (25). Once again, note that the TORS update is used as an intermediate
approximation in developing this fourth-order scheme. A nomenclature similar to the TORS is
adopted, and the proposed iterative scheme given by Eqs. (28) - (30) is simply termed the Fourth-
Order Root Solver (FORS). Compared to the Newton’s method, one does incur more computations
every iteration in order to implement the higher-order schemes. A comparison can be made by
plotting approximate values of the FLoating point OPerations (FLOPs) per iteration demanded by
each iterative scheme. This comparison is illustrated in Fig. 2 with respect to the dimension of a
given problem.
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Note that the FORS requires computations an order of magnitude higher than that required by the
Newton’s method. However, as is evident from the examples to follow, the higher-order schemes
provide superior robustness to the initial guess, which is an important quality to have while tack-
ling a TPBVP. Moreover, for some problems, higher-order schemes converge in significantly lesser
number of iterations than Newton’s method, thereby proving to be much more computationally effi-
cient. This is entirely dependent on the problem at hand. With the derivation of the FORS, the first
objective of this paper is accomplished, which is to develop a higher-order iterative scheme to solve
F = 0.

Figure 2: Comparison of FLOPs per iteration demanded by the different iterative schemes

However, it is necessary to demonstrate that the proposed iterative method works, before address-
ing the issue of computing higher-order derivatives. For this purpose, the Newton, Halley and FORS
schemes are applied to find the root of an analytical system of nonlinear equations given by

16x51 + 16x42 + x43 − 16 = 0 (31)

x51 − x22e
x1 + x23 − 3 = 0 (32)

x51 sin(x3)− x2 = 0 (33)

Through all the three methods, the roots obtained for an initial guess of [2, 2, 2] were

[x1, x2, x3] = [0.83966136, 0.41240179, 1.72524016] (34)

correct to twelve decimal digits of accuracy. However, the number of iterations and average ex-
ecution time per iteration were different, and are tabulated in Table 1. Note that the number of

Table 1: Comparison of iteration methods

Method Iterations Avg. time per iteration (s)
Newton 10 0.107 34
Halley 6 0.115 30
FORS 5 0.129 79

iterations required by FORS is half that of Newton’s method. The average time per iteration for
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FORS is slightly larger than Newton’s, due to the incorporation of derivatives up to the third order.
However, the total run time of Newton’s is considerably higher than FORS due to the greater num-
ber of iterations. It must also be noted that the super-Halley performs equally well in this case. In
general, there are documented scenarios where the Newton’s method performs just as good as Hal-
ley’s.31 Computational performance is completely dependent on the multidimensional surface under
consideration, and changes from system to system, and the quality of the initial guess. However,
as demonstrated in the aforementioned example, there are systems where the higher-order methods
outperform Newton’s method by a significant margin. Such root-solving methods are extremely
useful in optimization.

Iterative schemes are applied to find the roots of the gradient of a function, which are essentially
the stationary points one looks for in optimization. Newton’s method, along with several second-
order variants32–36 are widely used in optimization procedures. In order to compare such second-
order methods with a higher-order method, let us consider a simple example.

min
x1,x2

F = x61 + x42 (35)

The solution to Eq. (35) is known to be the origin of x1 and x2. Surface approximations of the
function F up to the fourth order are illustrated in Fig. 3a. Intuitively, the derivatives of a function
at a given point carry information about the function in a vicinity around that point. This is the notion
behind the Taylor series. The higher the derivative, the greater the quality of information about the
function in a bigger vicinity around the reference point. Note that the optimization procedure uses
these derivatives at the reference point to predict where the minimum would be. Naturally, this
would only be a prediction using the derivative information at the reference point, and the actual
minimum may not be this point. However, this prediction is taken as a new reference point where
derivatives are computed, in order to come up with another prediction. Subsequently, this iterative
process converges to the minimum of the actual surface within a specified tolerance. Therefore, with
more information of the higher-order derivatives of the surface at each iteration point, the minimum
of F is reached with fewer iterations. This is accomplished using the FORS, as it uses a fourth-order
approximation in its iterations. This fact is evident on comparing the FORS iterates with those of
the second-order Newton’s method, as illustrated in Fig. 3b. Note that it takes almost twice as many
iterations for the Newton’s method, compared to the FORS, to achieve an accuracy of 10−5. Hence,
FORS has great potential to be utilized in several optimization applications.

The main reason for Newton’s method being widely preferred is due to the cost of calculating the
higher-order derivatives, especially in systems where calculating the partial derivatives analytically
is not tractable. The examples seen so far do not capture the difficulty of this effort, as the systems
defined by Eqs. (31) - (33), and Eq. (35) were analytically differentiable without much effort.
However, for systems governed by differential equations, it is a completely different scenario. For
such dynamical systems, the F ′′ and F ′′′ tensors involve the computation of partial derivatives of the
state rates with respect to the states, followed by rigorous integration. This is where the usefulness
of the CUT-STT is realized. In that case, the complicated system dynamics is approximated by a
polynomial surogate model using the CUT-STTs, and brought down to a tractable form, similar to
the aforementioned analytical system of equations. The necessary higher-order derivatives required
by the FORS then become simple to evaluate analytically.

Therefore, by eliminating the need to compute partial derivatives to build the cumbersome F ′′

and F ′′′ tensors in the traditional way, one can reap the rewards of implementing a higher-order
root solver, without having to pay as much in terms of computational cost. On the other hand, in
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(a) Function surface approximation to various orders (b) Decrease in error with respect to iteration

Figure 3: Illustration of the FORS and Newton’s method in a minimization procedure

cases where a simple Newton’s method is sufficient, one doesn’t incur a significant loss in terms of
effort expended in employing the FORS. As mentioned earlier, these CUT-STTs have already been
proven to work well,25 and the process of using them to generate a polynomial model is discussed
in the following section.

Computation of sensitivities

When trying to effect a correction using an iterative root-solving scheme in the DC process, one
requires knowledge of the sensitivities of the terminal states with respect to the unknown initial
conditions and parameters. Recall that in the case of analytical systems, these sensitivities can be
obtained by means of straightforward partial differentiation. However, in dynamical systems, this is
a cumbersome process.

In a dynamical system, the sensitivities of the terminal states with respect to initial states are
given by the STM, in the case of first-order sensitivity, and by an mth order STT for mth order
sensitivities. Obtaining these STTs is a tedious process, as one has to find several partial derivatives
of the system dynamics with respect to the states, in order to build the n+n2 + · · ·+nm equations
before integrating them. For example, in order to be able to apply the FORS scheme, which is
known to incorporate fourth-order sensitivities, one would need to integrate Eqs. (36) - (39).37

Φ̇i,a = fi,αΦα,a (36)

Φ̇i,ab = fi,αΦα,ab + fi,αβΦα,aΦβ,b (37)

Φ̇i,abc = fi,αΦα,abc + fi,αβ(Φα,aΦβ,bc +Φα,abΦβ,c +Φα,acΦβ,b) + fi,αβγΦα,aΦβ,bΦγ,c (38)

Φ̇i,abcd = fi,αΦα,abcd + fi,αβ(Φα,abcΦβ,d +Φα,abdΦβ,c +Φα,acdΦβ,b +Φα,abΦβ,cd

+Φα,acΦβ,bd +Φα,adΦβ,bc +Φα,aΦβ,bcd) + fi,αβγ(Φα,abΦβ,cΦγ,d

+Φα,acΦβ,bΦγ,d +Φα,adΦβ,bΦγ,c +Φα,aΦβ,bcΦγ,d +Φα,aΦβ,bdΦγ,c

+Φα,aΦβ,bΦγ,cd) + fi,αβγδΦα,aΦβ,bΦγ,cΦδ,d (39)
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where the initial condition for the integration is simply Φi,a = 1, if i = a, in the case of the STM in
Eq. (36), and zero for the remaining elements of the STT. The highest-order partial derivative neces-
sary to implement the FORS scheme is of fourth-order, given by fi,αβγδ =

∂4fi
∂xα∂xβ∂xγ∂xδ

. Deriving
these partials beyond the second order becomes cumbersome. Note that the aforementioned process
only yields the sensitivities with respect to the initial states. In the case of additional parameters in
the system with unknown initial values, one has to find their sensitivities too. For example, such a
parameter sensitivity determination is encountered in the Zermelo problem, which is illustrated in
detail in the following section.

Significant difficulties arise when calculating the higher-order partial derivatives, and applying
the tensor operations given in Eqs. (37) - (39).38 Several efforts to handle the difficulty of obtaining
the partials have been explored by means of automated computational tools, a notable one being
the object oriented coordinate embedding method.39 With respect to the tensor operations, special
representations of tensors were proposed by Majji et al.38 for efficient computation. Note that most
of the effort was focused on handling the difficulties presented by Eqs. (36) - (39) in determining the
sensitivities. In this paper, we adopt an alternate derivative-free approach to determine the necessary
sensitivities without a need for the aforementioned tensor equations.

The alternate approach is based on a Least-Squares (LS)40 methodology. The fundamental idea
behind the LS process is to fit a model to a given input-output (I/O) data. Now, consider the context
of a DC process. The root-solving schemes in DC help in determining an update to the initial guess,
informed by the sensitivity of the terminal condition to the initial guess. In an LS sense, the initial
guess (θ) can be regarded as the input, while the terminal condition (F(θ)) corresponding to the
initial guess can be regarded as the output. Assuming a polynomial model to fit the I/O data,

F(tf ,θ) ≈ Kp(t0,θ) (40)

where p(θ) is a vector of assumed polynomial basis functions evaluated at the input points, and K
is a matrix of unknown coefficients to be solved for. A least-squares problem can now be set up as

min
K

J =
1

2
⟨[F(tf ,θ)−Kp(t0,θ)] , [F(tf ,θ)−Kp(t0,θ)]⟩ρ (41)

where ⟨., .⟩ represents an inner product with respect to ρ, which is the probability distribution func-
tion (pdf) of the input in the defined domain of interest. The minimization procedure leads to the
expression

K = LM−1 (42)

where, Mij = ⟨pi(t0,θ), pj(t0,θ)⟩ρ (43)

Lij = ⟨Fi(tf ,θ), pj(t0,θ)⟩ρ (44)

Using the coefficients obtained in the K matrix, a polynomial model as shown in Eq. (40) can now
be defined for F(tf ,θ). The coefficients contained in the K matrix are essentially the sensitivities
of the output with respect to the input. Therefore, if certain sensitivities of states or parameters at
the final time with respect to those at the initial time are required for the DC process, all one has
to do is define the input and output data appropriately, in order to obtain the required sensitivities
in the form of the K matrix. The order of the obtained sensitivities depends on the order of the
assumed polynomials making up the model.
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Note that in Eq. (43), inner products of the polynomial basis functions are taken to construct the
M matrix. As the order of the approximation increases, so does the number of polynomial basis
functions. This M matrix has to be inverted to obtain K, as shown in Eq. (42). Computing the
inverse of a large matrix contributes significantly to the complexity of the operation. To that end,
if one were to choose a set of orthogonal polynomial basis functions, then Mij = 0 ∀ i ̸= j.
Therefore, M becomes a diagonal matrix, the inverse of which is trivial to compute. Thus, the
computation of higher-order sensitivities can be performed with minimal computational load. For
all examples in this paper, the Legendre class of orthogonal polynomials is employed. The choice
of orthogonal polynomials varies based on the assumed pdf of θ in a defined domain. The Legendre
polynomials are generally used when a uniform pdf of the input is assumed.41

In order to sample data in a defined domain, and evaluate the multidimensional integrals given
by Eqs. (43) and (44), the CUT quadrature points21 are used. CUT provides an optimal sampling
of points in a domain, while still capturing the pertinent characteristics of the domain to a good
degree of accuracy. The output F(θ) is evaluated at all these CUT points, and this forms the data
set necessary to initiate the LS process to determine the sensitivities. CUT has been used in several
applications21–24 with great success, and its comparison with other quadrature schemes has been
well documented.22, 25, 42, 43 Due to the usage of CUT quadrature points, and for ease of reference,
the sensitivities contained in the K matrix of Eq. (42) are termed the CUT-STT. However, the
information contained in K could be any sensitivity, based on the I/O data of the LS process, and
not necessarily the state sensitivities which are generally referred to as the STT.

The LS-based stochastic approach to evaluate sensitivities eliminates the need to know the nu-
merous partial derivatives, and perform tensor operations, thereby alleviating the computational
burden of traditional methods. Recall that the said challenges of partial derivatives and tensor op-
erations arise due to the nature of description of STTs given in Eqs. (37) - (39). Such a description
in turn finds its origin in Taylor series expansions about a reference.38 This means that the STTs
obtained using Eqs. (37) - (39) are valid in a small neighborhood around the reference, similar to
the one-dimensional example illustrated in Fig. 1. While the size of the neighborhood increases
with increase in the order of the STT, there are no definite bounds that one can define, within which
it remains valid.

On the other hand, with the CUT-STT, the description first starts with the definition of a domain
for the input (θ), within which the CUT points are populated to acquire data for the LS procedure.
Therefore, the CUT-STT is valid within a well-defined domain. For this reason, they are not exactly
equivalent to traditional sensitivities, yet, they serve the same purpose when it comes to a DC
process. Having explored the FORS on simple analytical systems, the following sections examine
its application to DC schemes on dynamical systems, with the help of the CUT-STT.

ZERMELO PROBLEM

The Zermelo problem is chosen as the first example to study the combined efficacy of the CUT-
STT and the FORS algorithm on dynamical systems. The problem deals with the design of a control
policy for the steering angle of a ship, in order to reach a desired target in minimum time, in the
presence of ocean currents.2, 44 The dynamical equations are given by2

ẋ = V cos γ + u(x, y) (45)

ẏ = V sin γ + v(x, y) (46)
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where u and v are the ocean currents as functions of the position of the ship, γ is the steering angle,
and V is the constant speed at which the ship is moving. The Hamiltonian of the system for the
minimum time problem is given by

H = λx(V cos γ + u) + λy(V sin γ + v) + 1 (47)

where λ is the costate vector. The necessary conditions for optimality, in addition to Eqs. (45) and
(46) are

λ̇x = −∂H
∂x

(48)

λ̇y = −∂H
∂y

(49)

The stationarity condition yields the steering angle as a function of the costates.

∂H

∂γ
= V (−λx sin γ + λy cos γ) = 0 (50)

=⇒ γ = tan−1

(
λy
λx

)
(51)

Eqs. (45), (46), (48), and (49) form a TPBVP, given the initial position of the ship and its desired
final destination. An analytical solution to a simplified Zermelo problem is provided by Bryson and
Ho.2

In the simplified version of the problem, v is considered to be zero. A scaling factor h is intro-
duced for the length units. In this special case, h and V are each considered to be unity. The current
u is given by

u = −V
(y
h

)
(52)

The initial position of the ship is

x0
h

= 3.66 ,
y0
h

= −1.86

The target destination is the origin. We shall address the same simplified problem in order to verify
the results obtained using FORS. First, we implement a conventional numerical DC scheme employ-
ing up to the second-order STT, in order to highlight the differences between first and second-order
DC methods. For this problem, the unkown parameters, also referred to as the design variables for
the DC scheme are θ = [λx0 , λy0 , tf ]. The objective function at the final time, whose root is desired,
is given by F = [xf , yf , Htf ]. Note that Htf = ∂H

∂tf
= 0 is an additional necessary condition, since

tf is a free parameter2 in the setup of this TPBVP. Note that since tf is an unknown parameter, the
integration is carried out with respect to a non-dimensionalized time variable τ = t

tf
. Therefore,

the dynamical equations have to be changed appropriately to reflect τ as the independent variable.

Starting from an initial guess of the design variables, an iterative correction process is carried out
by employing Newton’s method, which is referred to as first-order DC. Rewriting Eq. (9) for the
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parameters of this problem, the necessary update equation at each iteration of the DC process can
be written as 

λx0

λy0

tf


new

=


λx0

λy0

tf


old

−


∂xf

∂λx0

∂xf

∂λy0

∂xf

∂tf

∂yf
∂λx0

∂yf
∂λy0

∂yf
∂tf

∂Htf

∂λx0

∂Htf

∂λy0

∂Htf

∂tf


−1 

xf

yf

Htf

 (53)

In Eq. (53), note that columns one and two of the sensitivity matrix consist of elements of the
STM, which are given by Eq. (36). Column three consists of sensitivities with respect to the free
parameter, which is not given by the STM. In order to obtain these sensitivities, a procedure similar
to the derivation of Eq. (36) can be adopted, but with respect to the free parameter (tf ), instead of
the states. On doing so, one obtains

ψ̇ =
∂f

∂tf
+
∂f

∂x
ψ (54)

where ψ is a vector of sensitivity of each state to the free parameter, and f is simply the system
dynamics. The initial condition ψ0 for Eq. (54) is simply a zero vector. A second-order DC would
require a second-order STT and parameter sensitivity, in addition to the STM, in order to implement
Halley’s algorithm given in Eq. (18).

An initial guess of [λx0 , λy0 , tf ] = [0.59,−1.77, 6.46] is assumed, and the TPBVP is solved
using both the first-order and second-order DC schemes. The paths corresponding to each iterate
of the first-order and the second-order DC schemes are illustrated in Figs. 4a and 4b, respectively.
Recall that first-order DC employs Newton’s iterative root-finding scheme, while second-order DC
employs Halley’s iterative scheme. These paths are also visualized in terms of λx and λy on the
surface of the objective function in Fig. 4c. Note that the second-order update is of higher quality,
compared to the first-order. This is evident in the progression of the iteration paths from the initial
guess to the converged solution.

Note that for this problem, a first-order DC scheme requires the integration of 35 equations per
iteration, while a second-order DC scheme requires the integration of 160 equations per iteration.
The issue lies in the fact that first-order DC converged to the optimal solution in eleven iterations,
while second-order DC converged in eight iterations. The computational expense of three more
iterations of first-order DC is far lesser than the computational expense of implementing a second-
order DC. The prime reason for the high cost of the latter lies in the evaluation of the second-order
STT. It is for this reason that first-order DC is widely preferred, and higher-order methods are
very rarely used. However, the CUT-STT helps in tackling this issue, so that higher-order methods
become feasible to employ in DC. Henceforth in the paper, all DC schemes of second-order and
higher are implemented using the CUT-STTs.

The example illustrated in Fig. 4 showcased the advantage of a second-order DC scheme (using
Halley’s algorithm) in tackling the TPBVP. In order to highlight the effectiveness of the proposed
higher-order schemes, a stochastic study is undertaken. The goal of this study is to examine the
robustness of the higher-order schemes to the initial guess, in comparison to the Newton’s method.
For the TPBVP illustrated in Fig. 4, 500 random initial condition samples are chosen from within
predefined domains for [λx0 , λy0 , tf ]. Three such cases are considered, where the domains have

15



(a) First-order differential correction (b) Second-order differential correction

(c) Iteration paths viewed on the objective function’s surface, with respect to λx and λy

Figure 4: Comparison of first-order and second-order differential correction schemes

increasing sizes from case-1 to case-3, as illustrated in Table 2. Note that these domains are built
around the actual solution to the TPBVP. Therefore, from case-1 to case-3, the quality of the ran-
domly chosen initial guesses in each case gets progressively worse.

In each case, all 500 initial guess samples are put through five different solvers. The first would be
the regular DC utilizing Newton’s algorithm, and generates the required sensitivities using Eqs. (36)
and (54). The second solver also utilizes Newton’s algorithm, but generates the required sensitivities
from a polynomial model corresponding to the domain under consideration. This model can be
constructed by implementing Eqs. (40) - (44). A fourth-order polynomial model is adopted for all
the test cases. The necessary sensitivities can simply be analytically derived from the polynomial
model to effect the corrections process. This is referred to as the non-intrusive approach to DC,
and is the main focus of this work, as it enables a computationally efficient way to perform higher-
order DC. It is termed non-intrusive, as one does not require explicit knowledge of the system
dynamics in order to construct the polynomial model. Model construction is simply driven by data
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generated at the CUT points. Therefore, for all intents and purposes, the system dynamics could
essentially be a black box that yields output data for any input passed into it, and the non-intrusive
approach can still perform a successful DC process. The higher-order sensitivities supplied by
the polynomial model enable the implementation of Halley’s algorithm, the TORS and the FORS,
without computational burden. Out of the 500 initial guess samples, the number of those that lead
to a converged result when put through the different solvers is recorded. Using this observation, the
corresponding convergence probability for each method is tabulated in Table 2. This convergence
probability is used to quantify the robustness of the methods to the initial guess.

Table 2: Convergence probability of various methodologies in finding a solution to a given TPBVP,
tabulated for a study of 500 initial guess samples

Case

Variable bounds Convergence Probability

λx λy tf
Regular DC

(Newton)
Non-intrusive approach

Newton Halley TORS FORS

1 [0.2, 0.8] [−2.2,−1.5] [4.5, 6.5] 71% 72% 72.6% 84.2% 91.6%

2 [0, 1] [−2.4,−1.3] [3.5, 7.5] 38.4% 44.4% 44% 52.2% 72.6%

3 [−0.2, 1.2] [−2.6,−1.1] [2.5, 8.5] 24% 19.6% 32.2% 33.2% 49%

It is known that a regular DC method using Newton’s algorithm requires an initial guess close
enough to the actual solution of the TPBVP, in order to achieve successful convergence. Getting
started is an infamous difficulty one often faces while dealing with gradient methods. Higher-
order methods alleviate that difficulty, as observed in the results shown in Table 2. In case-1, a
small domain around the nominal solution is chosen to populate the initial random guesses. Note
that 71% of those samples are good enough for the Newton’s scheme to start with and reach the
solution iteratively. Essentially, this means that the quality of the remaining samples in the domain
chosen in case-1 are insufficient for Newton’s method to reach the solution. However, note the
increasing convergence probability as one increases the order of the DC scheme employed. Halley’s
scheme does not yield a significant advantage over Newton’s for this problem, however, the TORS
and FORS provide considerable improvement with convergence probabilities of 84.2% and 91.6%,
respectively.

One has to keep in mind that the necessary higher-order sensitivities for the Halley, TORS and
FORS algorithms are supplied by the polynomial model, which is an approximation of the dy-
namics in the first place. Nevertheless, the derivatives supplied by the model provide good, useful
information in generating the higher-order updates to achieve convergence to the solution.

Case-2 considers a bigger domain than case-1 as indicated in Table 2. This time, only 38.4% of
the samples are feasible for the Newton’s scheme to work with and converge to the solution. On
the other hand, the FORS yields a success probability of 72.6%, which is nearly double that of a
conventional first-order DC scheme. It must be noted that as the size of the domain increases, the
quality of the approximation of dynamics captured by the polynomial model decreases. Regardless,
the FORS is still considerably more robust to the quality of the initial guess than conventional DC.

The domain chosen in case-3 is considerably large, consequently leading to a significant reduction
in convergence probability of the conventional DC scheme. The large size of the domain affects the
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quality of the polynomial model, thereby affecting the convergence probabilities of the higher-order
DC schemes as well. From Table 2, it must be noted that even at this stage, the FORS is twice as
likely as the conventional Newton’s method to converge to the solution. This study bears significant
evidence of the superior robustness of higher-order schemes, especially the FORS, to the quality of
the initial guess.

Figure 5: Surface plot of the RMSE between the true Jacobian and the approximated Jacobian
generated by the polynomial model, illustrating the sensitivity of the approximation quality to the
domain sizes of λ and tf

The domains discussed in Table 2 were simply referred to as being smaller or larger compared to
one another. However, one can obtain a better idea of the sensitivity of the polynomial approxima-
tion to the domain size of each unknown parameter by performing a parameter sensitivity analysis.
The bounds for the domains discussed in Table 2 were defined using [λ∗x + hλ, λ

∗
y + hλ, t

∗
f + htf ],

where λ∗x, λ∗y and t∗f represent the actual solution to the TPBVP, and hλ and htf control the size of
the domain around that solution, from which the initial guess samples are chosen at random. One
can comprehend the quality of approximation produced by the polynomial model, by comparing the
two norm error between the Jacobian calculated by the conventional method (using Eq. (36)), and
that calculated using the polynomial model, as a function of the domain size of λ and tf .

Fig.5 illustrates the aforementioned error, and provides grounds for judiciously choosing the
domain sizes. Each point on the hλ-htf plane in Fig. 5 represents a domain [λ∗x+hλ, λ

∗
y +hλ, t

∗
f +

htf ]. The Jacobian RMSE corresponding to each domain is calculated by considering a pool of 50
random samples, to obtain insight into the maximum values of hλ and htf one could choose without
compromising on the robustness of the higher-order methods. The cases summarized in Table 2 are
also indicated in Fig. 5 for reference. For case-3, with hλ ≈ 0.7 and htf ≈ 3, it is observed that the
Jacobian RMSE is close to an order of 101. Recall that the convergence probability of the FORS
was approximately 50% for this case. Therefore, this point could be considered as a cut-off point
beyond which it would be worthwhile to construct a new polynomial model for different values of
λ∗x, λ∗y and t∗f .
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Note that λ∗x, λ∗y and t∗f simply refer to arbitrary reference values around which a domain is
considered, and they do not need to be the actual solution to the problem at hand. They were only
chosen to be the true solution in this work for the purpose of the case study in Table 2, which was
to demonstrate robustness of the FORS to the initial guess.

The values of hλ and htf are primarily problem dependent, as well as on one’s knowledge of
whereabouts of the solution, if a physical intuition exists. Often times, such intuitions are hard
to develop when tackling TPBVPs relevant to optimal control problems, as the co-states generally
do not carry physical meaning. This is one of the many reasons why one can benefit from a DC
scheme that is more robust to initial guess, compared to commonly used schemes in the present day.
The FORS is presented as one such scheme in this paper. Having successfully applied higher-order
schemes using a non-intrusive approach to the DC process on the Zermelo problem, let us move on
to study the performance of the proposed methodology on problems in the CR3BP, given the highly
sensitive and chaotic nature of the CR3BP system. For this reason, the non-intrusive DC approach
is put to the task of solving TPBVPs to find periodic orbits in the CR3BP in the following section.

CIRCULAR RESTRICTED THREE BODY PROBLEM

The CR3BP is formulated in a frame that rotates along with the primaries, called the synodic
frame. The x̂ basis vector points from the origin, which is at the barycenter of the Earth-Moon
system, toward the Moon. The ŷ basis vector is perpendicular to it and lies in the plane of motion
of the primaries. The ẑ vector is given by the cross product of x̂ and ŷ. A canonical system of units
is employed where one length unit (LU) is equal to the distance between the two primaries and one
time unit (TU) is chosen such that the mean motion of the primaries is unity. For the Earth-Moon
system, 1LU = 384 400 km and 1TU = 4.3424 days.

The Cartesian CR3BP equations of motion are

v̇x = Ωx + 2vy (55a)

v̇y = Ωy − 2vx (55b)

v̇z = Ωz (55c)

where vx = ẋ, vy = ẏ, vz = ż, and Ω is the pseudo-potential in the synodic frame. Ωx,Ωy and Ωz

are the partial derivatives of Ω with respect to x, y and z, respectively.

Ω =
1

2
(x2 + y2) +

(1− µ)

r1
+
µ

r2
(56)

where r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x+ µ− 1)2 + y2 + z2, and µ = m2
m1+m2

. r1 and
r2 are the magnitudes of the position vectors of the spacecraft relative to the Earth and the Moon,
respectively. m1 and m2 are the masses of the Earth and the Moon, respectively. µ is the character-
istic parameter in the synodic frame. For the Earth-Moon system, µ = 0.012151. There exists an
integral of motion in the CR3BP known as the Jacobi integral or the Jacobi constant (C).

C = 2Ω− (v2x + v2y + v2z) (57)

The CR3BP admits several periodic solutions. One such solution is the Lyapunov orbit. De-
termining the initial conditions that would yield a Lyapunov orbit in the chaotic, highly nonlinear
environment of the CR3BP, requires the use of numerical techniques and a good initial guess.
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The process starts with a linear approximation of the dynamics in the vicinity of the L1 Lagrange
point. A periodic solution to the linear dynamics is found, and put through a DC process in order
to obtain the solution to the true nonlinear system. The DC process to find a Lyapunov orbit is
traditionally set up using Newton’s method asẏ0

τ


new

=

ẏ0
τ


old

−

Φy,ẏ ẏf

Φẋ,ẏ ẍf

−1 yf
ẋf

 (58)

where τ here is the half period of the orbit. Once a solution is obtained, a continuation process is
adopted by stepping along x0 to create a new boundary condition. Subsequently, the new TPBVP
is solved to obtain the second periodic solution of the family, and the process is repeated until
termination of the family. The characteristics of a family vary from system to system. Each CR3BP
system is uniquely defined by the mass parameter µ. Therefore, in order to study the periodic
families in different systems, a DC process combined with continuation is necessary. For analytic
purposes, one might be interested in the size and characteristics of these periodic orbit families as a
whole. In order to obtain insight about the size of a family, one has to go through the continuation
process sequentially, and cannot afford to skip ahead to the end of the family, as there is no means
to do that if a particular CR3BP system hasn’t already been catalogued.

The drawback here lies in the fact that the stepping distance in the continuation process is an
important parameter, as too big a step can sometimes result in the inability of the differential cor-
rector to find a solution. Therefore, small steps are taken cautiously, with provision to reduce the
step size should the corrector experience trouble along the way. For the purpose of demonstration,
a traditional DC scheme is first employed to find a series of orbits belonging to the L1 Lyapunov
family by performing the continuation process with a fixed step size of 120 km. It was observed that
160 steps were able to be completed before the step size proved too big a difference in the initial
guess for the Newton’s scheme to converge to a solution. These set of orbits are illustrated in Fig.
6b.

Now, let us employ a similar continuation process starting from the same initial orbit as the first-
order DC scheme, but using a second-order DC scheme this time with the non-intrusive approach.
Using the CUT-STT, a polynomial model of second order is constructed. For the second-order DC
process, a step size of 300 km is adopted. Recall that one of the significant results obtained in the
previous case study of the Zermelo problem, was that the necessity for a good initial guess is relaxed
when using a higher-order DC scheme, as opposed to a first-order one. This feature is tested in the
CR3BP by adopting a higher step size in the continuation process. The goal is to go from family
initiation to a certain bound on the family with a reduced number of steps, in comparison to the
traditional first-order scheme. This can be observed in Fig. 6a and Fig. 6c. For demonstration
purposes in this paper, the continuation process is only carried out for 100 steps using second-order
DC. In comparison with Fig. 6b, note the sparse collection of orbits in Fig. 6c, which is a visual
indication of the contrast in step size difference. From Fig. 6a, by examining the range of C, it
is understood that the second-order DC generates about twice the range of orbits yielded by the
first-order method. This difference is a major advantage provided by the second-order DC scheme
over the traditional first-order method, and is a testament to the superior robustness of the second-
order scheme to initial guess in this particular problem. Studying the bounds of families of periodic
orbits in a CR3BP system becomes much easier when the sequential process of continuation takes
larger steps. Larger steps tend to reduce the quality of the initial guess for the subsequent TPBVP
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(a) Range of orbits yielded by 2nd order DC indicated by their C values and initial XZ plane crossing point

(b) 1st order DC with small continuation steps (c) 2nd order DC with larger continuation steps

Figure 6: Comparison of continuation steps necessary between 1st and 2nd order DC for generation
of Lyapunov orbit family

in the purview of the Newton’s scheme, hence forcing a smaller step size. However, higher-order
schemes, now made computationally feasible by the non-intrusive DC approach, can work well with
an average quality initial guess, in order to obtain a successful solution.

It is to be noted that in the second-order DC as implemented here, at each step of the continuation
process, a new polynomial model is generated to perform the iterations. This is because a new
continuation step creates a new prescribed boundary condition. Therefore, a polynomial model
corresponding to the new condition is generated in an arbitrarily chosen domain of the unknowns ẏ0
and τ . However, in performing a second-order non-intrusive DC, only 8 CUT points were utilized.
Therefore, generating a new polynomial model at every continuation step required 48 equations to
be integrated. In other words, it takes 48 integrations for each orbit in the family. On the other
hand, when using a conventional DC, one is required to integrate 42 equations each iteration, in
order to find one orbit. On average, a conventional Newton’s scheme yields a converged solution
in 5 iterations. This means that one has to integrate 210 equations on average to find one orbit
using conventional DC, while on the other hand the same can be achieved using 48 integrations
using the non-intrusive DC approach. Moreover, the FLOPs necessary for the second-order DC
involving Halley’s scheme, is not significantly more than that required by the Newton’s algorithm,
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as illustrated in Fig. 2. Therefore, the second-order non-intrusive DC proves to be significantly
more efficient than the traditional DC scheme of first order.

In comparison, if one wishes to employ second-order DC traditionally, without the polynomial
model for this problem, one would be required to integrate 258 equations per iteration in order
to determine the second-order STT necessary for the DC process. This was a huge factor that
prevented the usage of such second-order schemes in the CR3BP, until now. With the advent of
non-intrusive DC, a significant computational burden is alleviated, thus opening the door for the
fruits of higher-order DC schemes to be enjoyed.

CONCLUSION

A novel methodology involving a higher-order iteration scheme termed FORS, with the necessary
higher-order derivatives supplied by a polynomial model, was developed to aid in solving TPBVPs.
The FORS was observed to outperform the traditional DC scheme in terms of its robustness to
the quality of the initial guess. Moreover, a derivative-free approach was adopted to construct the
polynomial model in a given domain, that made the implementation of the higher-order scheme
much more easy to handle, as the computation of higher-order sensitivities was one of the major
factors prohibiting the widespread use of higher-order iterative schemes so far.

The proposed methodology was successfully applied to examples to demonstrate the aforemen-
tioned claim of robustness to initial guess, in tandem with the polynomial model, which tackled the
difficulty of obtaining higher-order sensitivities. A parameter sensitivity study was carried out in the
Zermelo problem to determine the feasible size of the domain in which one can expect good results
from the proposed methodology. Future work could take into account the observations made from
this study, in order to dynamically update the domain and learn a new polynomial model during the
correction process. In such a case, the algorithm would have no problems arriving at the solution
by switching between models depending on the domain in which each iterate obtained during the
correction belongs to. Such a scheme would be beneficial to spacecraft guidance problems, which
will be explored in the future.
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