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Abstract. Forward propagation of uncertainty in physics-based model is nontrivial and a necessary undertaking.
This paper provides a methodology for decomposing the state space of scalable dynamical systems
with strong interstate coupling. The outlined approach intends to make rigorous Uncertainty Quan-
tification (UQ) of the high-dimension problem feasible by partitioning the overall high-dimensional
state space problem into multiple lower-dimensional state space problems. This approach will work
quicker with a lesser memory space requirement than existing methods. To enable accelerated
and scalable UQ in high-dimensional complex physical system models, the proposed decomposition
process leverages an overlapping community detection to detect state variables participating in more
than one subsystems (clusters). The final UQ solution is obtained by using the concept of Hada-
mard product of the state variables in a subsystem (cluster) and their association in the cluster. The
developed approach has been tested to detect connected subsystems in coupled dynamical systems.
The results analyzing spatio-temporal flow equation are also presented. It is also shown that pro-
posed framework approach is faster and works with a lesser memory requirement to carry out UQ
of high-dimensional physical system models.

Key words. uncertainty quantification, large scale systems, strongly coupled subsystems, state-space clustering,
overlapping cluster detection, Hadamard product
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1. Introduction. Physical processes are often modeled as scalable nonlinear systems. Ad-
ditionally, the presence of uncertainty in the state variables or parameters underlying such a
system is highly probable. The number of state variables involved in the complex mathematical
models is often large. To get a better understanding of a system, Uncertainty Quantification
(UQ) is used as a tool to enable rigorous prediction modeling. UQ by analytic methods of
high-dimensional systems is computationally intractable due to the well-known phenomenon
of curse of dimensionality. For a high-dimensional system, conventional UQ methods become
ineffective due to significant error in the approximation with propagation. To make rigorous
UQ of the high-dimension problem feasible, it is prudent to utilize the strategy of divide and
conquer. We present a computational scheme for solving such high-dimensional physics-based
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828 MUKHERJEE, RAI, SINGLA, SINGH, AND PATRA

models by decomposing the overall system into connected subsystems. This is achieved by
partitioning the set of physical states and the functional decomposition in the probability
space. The UQ for the overall system is carried out by agglomerating results of UQ tech-
niques on smaller subsystems. Such a decomposition facilitates a faster analysis by utilizing
the power of parallel computation. In addition, the partitioning scheme when integrated with
UQ techniques such as quadrature-based methods exhibit drastic reduction in the number
of collocation points. Our prior work focused on using techniques of linearization and graph
clustering to decompose such systems into a mutually exclusive and exhaustive set of sub-
systems [35]. The current work relaxes this assumption and focuses on the UQ of Strongly
Coupled System (SCS). The concept of degree of participation or fuzzy association of a state
variable in a particular subsystem has been employed to enable UQ of high-dimensional sys-
tems (Figure 1.1). The fuzzy association allows us to determine the number of subsystems
and the state variables participating in each subsystem.

Figure 1.1. Use of overlapping clusters of state variable for propagation of individual clusters in parallel.
The third step shows mapping of overlapping variables to nonoverlapping clusters.

Our proposed framework integrates the concept of variance and domain decomposition.
Given a dynamical system with uncertainty information, the best possible linearization of the
velocity function is approximated. The fuzzy association of the state variables in a particu-
lar subsystem is then obtained from an Overlapping Graph Clustering Algorithm. Such an
algorithm treats a linearized matrix as a well-connected graph and provides the number of
clusters and the degree of participation of each node in a cluster. The clusters are treated
individually in parallel. Thereafter, the solution is obtained by the element-to-element or
Hadamard product of the solution of the state variables in a cluster and their association in
the cluster.D
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SCALABLE UNCERTAINTY QUANTIFICATION 829

The paper is organized as follows: Section 2 reflects on some of the recent related works.
Section 3 discusses the overall methodology for the UQ of a high-dimensional dynamical
system. Specifically, section 3.1 outlines the problem formulation. Section 3.2 presents the
overall framework. Section 3.3 defines the concept of Weakly Coupled Subsystem (WCS) and
SCS. Section 3.5 provides theoretical details on the distribution of 27 SCS. Sections 3.4--3.8
provide details involving the method of linearizing, clustering, and UQ. The effectiveness of
the developed framework is demonstrated on suitable numerical experiments in sections 4 and
5. Section 6 concludes with a summary of the framework, its effectiveness, and some possible
future works.

2. Related work. The presented work follows the idea of stochastic domain decomposi-
tion [12, 42, 48] and additive Schwarz method [7, 44, 53]. Although these works focus on
the overlapping or nonoverlapping partitioning of a continuous space domain, the methods
provide a computational intuition for partitioning a set of discrete physical states. The cur-
rent section is focused on the literature survey of two main pertinent categories. The first
category is related to overlapping cluster detection algorithms. These algorithms have been
researched widely in the field of community detection problems in a connected network. The
second category of related works discusses the useful UQ techniques.

2.1. Overlapping community detection. The study of overlapping community has been
a recent addition to the world of scientific research. Instead of detecting disjoint community
in a network, in overlapping community framework a node in a network can participate in
multiple communities. In this context, Baumes et al. [4] proposed a two-step algorithm to
identify disjoint clusters, followed by an iterative method of assigning nodes to clusters un-
til a density function is improved. Palla et al. [37] have developed a clique-based method
and have applied the method to a protein network comprising of 30,739 links. Algorithms
such as LFM [26], MONC [21], CPMw [16], and SCP [25] have extended the earlier work to
enhance the applicability of community detection algorithms. OSLOM [27] and several ef-
fective overlapping community detection algorithms identifying overlapping cluster structures
in complex networks also exist [8, 36, 43]. Although, all the above mentioned works detect
overlapping clusters, they do not quantify the degree of participation of a node in a given
cluster. To address the shortcoming of quantifying the degree of participation, fuzzy based
clustering methods have been developed. The fuzzy k-means algorithm in which, instead of
optimizing the sum of the Euclidean distance between the nodes and the cluster centers, a
weighted objective function is used to quantify the degree of participation [15]. Zhang, Wang,
and Zhang [54] has combined the fuzzy k-means clustering algorithm with the well-established
method of Spectral Clustering [51]. Distribution-based algorithms have been further devel-
oped, whereby the association of a node to a cluster is modeled as a probability distribution
and is updated with the availability of the adjacency information [28, 31, 39]. In our current
work, we have used the nonnegative matrix factorization based algorithm to detect the degree
of association of a node to a cluster [39]. The algorithm iteratively minimizes the rank of the
degree matrix along with finding the association of the nodes in each cluster.

2.2. Scalable uncertainty quantification. The UQ of a physical system refers to the for-
ward propagation of the statistical properties of the variables of interest based on the random-D
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830 MUKHERJEE, RAI, SINGLA, SINGH, AND PATRA

ness in its initial conditions or parameters. This involves repeated simulations of the system
on a pool of realizations generated for the multidimensional state variable. Sampling-based
methods [5, 6, 17, 18, 22, 32] requires a generation of a large number of samples from the ini-
tial probability distribution. While Monte Carlo (MC) methods suffer from slow convergence
rates, the other sampling strategies to alleviate this problem (e.g., Importance Sampling [32])
cannot be paralleled effectively. For large dynamical systems, simulation-based approaches re-
quire a significant number of sample points for state space distribution approximation. A large
number of sample points make simulation-based methods very computationally intensive.

An alternative to the random sampling is the Quadrature Scheme such as Gaussian
Quadrature [47] and its variation such as Sparse-grid Collocation [3, 19], Minimal Cuba-
tures [2, 14, 46], which involve a deterministic scheme to generate points to reproduce exactly
the integrals for polynomials, or the moments of the density function. These schemes require
a relatively smaller number of points (quadrature, cubature, or sigma points) that can ap-
proximate the distribution of the large-dimensional random vectors. While Quadrature and
Sparse-grid Quadrature based methods require exponential or high-dimensional polynomial
order of realizations, minimal cubature methods exist only for few dimensional problems and
for selected probability density functions (pdfs).

Scalable problems in UQ have been addressed by Domain Decomposition [30], partial
observation [38], network-based method [20, 24], and Anova Decomposition [40]. The method
presented in this paper is a combination of networks-based and Anova decomposition that uses
an overlapping graph clustering algorithm. The method also aids in performing meaningful
domain decomposition in spatio-temporal flow problems.

3. Overlapping cluster detection based method for uncertainty quantification of large
dynamical system. This section discusses following components in details: (1) Overall frame-
work for finding Strongly Coupled Subsystems (SCSs) and (2) propagation of uncertainty in
a large dynamical system through the SCSs.

3.1. Problem formulation. Consider a n-dimensional coupled dynamical system defined
by the following Stochastic Differential Equation (SDE):

(3.1) \.xt = f(xt), xt0 = x0,

where f(x) is an n-dimensional vector of deterministic square integrable functions f =
[f1, f2, . . . , fn], with f : \BbbR n \times \BbbR \rightarrow \BbbR n. Here xt = \{ x(t, \omega ), t \in [0,\infty ), \omega \in \Omega \bfx \} is a sto-
chastic process defined on the probability space (\Omega \bfx ,\scrF \bfx , P\bfx ) and

(3.2) xt : ([0,\infty )\times \Omega \bfx ,\scrB ([0,\infty )),\scrF \bfx ) \rightarrow (\BbbR n,\scrB (\BbbR n)).

Equation (3.1) admits the solution xt = \phi t(x0), where the deterministic flow is given by

(3.3) \phi : \BbbR \times \Omega \bfx \rightarrow \BbbR n.

The probability measure P\bfx t is characterized by the density function p(xt, t) : \BbbR n \times \BbbR 
\rightarrow [0, 1], which is a function of both xt and t, where

(3.4) P\bfx t = P (xt \leq zt) =

\int \int 
. . .

\int \bfz t

 - \infty 
p(\tau , t)d\tau .

D
ow

nl
oa

de
d 

08
/2

7/
20

 to
 1

28
.1

18
.7

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

SCALABLE UNCERTAINTY QUANTIFICATION 831

Our objective is to efficiently compute the statistical properties (say, first few moments)
of state variable xt = \phi t(x0), given as

(3.5)
\mu tk = E[xtk ],
\Sigma tk = E [(xtk  - \mu tk)(xtk  - \mu tk)

\prime ] .

The main challenge lies in computing statistical moments when n is very large.

3.2. Proposed framework. We brief on the main components of our proposed framework.
The key idea is to show how a large-dimensional dynamical system can be decomposed into
small interconnected subsystems to be solved in parallel. Figure 3.1 depicts the computational
pipeline of the underlying methodology. Similar to our previous methodology [33, 35], a graph-
theoretic representation is adopted for a given dynamical system with involved uncertainty.
Unlike the previous approach, the graph is hypothesized to comprise both weak and strong
edges or couplings. The statistical linearization method is used to linearize the dynamical
system in the domain of interest represented by the initial state density function (Figure 3.1a).
Next, a suitable overlapping community detection algorithm is applied to detect the SCSs
(Figure 3.1b). These SCSs determine the assignment of each node or variable to a cluster and
their participation (Figure 3.1c). The stochastic dynamical system corresponding to each SCS
of reduced order is then propagated by a UQ method (Figure 3.1d). An element-to-element
product based step is applied to estimate the statistical properties of the state vector from
the properties of the SCSs. These steps are followed to approximate the statistical properties,
that is being propagated through the dynamics of the overall system. The overall procedure
is continued until a measurement data is available. The measurement is used to filter out
noise from the state variable and the statistical properties are recalibrated using a Filtering
technique (Figure 3.1e). The cluster structure or the SCSs is/are then recomputed based
on the updated statistical properties. The whole process is followed for the required time
of analysis. In the subsequent subsections, the theoretical and algorithmic details of each of
these steps are discussed.

3.3. Definition of weakly coupled subsystems and overlapping clusters. Given the sys-
tem of SDE in (3.1), the solution for an initial condition x0 is given by the vector of functions
\phi t(x0) = [\phi t(x0)1, \phi 

t(x0)2, . . . , \phi 
t(x0)n]. The function \phi t(x0) is computed by the following

stochastic integral:

(3.6) x\bft = \phi t(x0) = x0 +

\int t

0
f(x\tau 1, x\tau 2, . . . , x\tau n)d\tau .

The expected value of a measurable function \scrG , square integrable function in the probability
space of xt, is given by the deterministic multidimensional integral

(3.7) E[\scrG (xt)] =

\int \int 
. . .

\int 
\Omega \bfx 

\scrG (xt1, xt2, . . . , xtn)dP\bfx .

For any high value of n, both of the integrals (see (3.6) and (3.7)) are computationally ex-
pensive. To facilitate a faster computation, the definitions of Weakly and Strongly Connected
Subsystem (WCS and SCS) are introduced next.D
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832 MUKHERJEE, RAI, SINGLA, SINGH, AND PATRA

Figure 3.1. Overall framework of the methodology.

3.3.1. Weakly coupled subsystem. The definition of WCSs follows from our earlier
works [33, 35]. WCSs ytj \in \BbbR nj are countable and nonoverlapping partitions of the state
space xt \in \BbbR n such that they are decoupled with each other, and their ensemble can approxi-
mate the propagation of the whole system. For the dynamical system in (3.1), the state space
xt is clustered into m subsets as

(3.8)

yt1 = \{ xt11 , xt12 , . . . , xt1n1
\} ,

yt2 = \{ xt21 , xt22 , . . . , xt2n1
\} ,

...
ytm = \{ xtm1 , xtm2 , . . . , xtmn1

\} ,

where
\sum m

j=1 nj = n. Each WCS ytj , j = 1, . . . ,m, is a reduced order stochastic process defined
on the probability space (\Omega j\bfx ,\scrF j\bfx , Pj), such that \Omega \bfx is the disjoint union of the countable
partitions \Omega j\bfx 's. The submanifold ytj is defined by the following \BbbR nj -dimensional SDE:

(3.9) \.ytj = fj(ytj ), j = 1, 2, . . . ,m,

where fj(ytj ) = \{ fj1 , fj2 , . . . , fnj\} is a subset of the vector of functions f(\cdot ). The solution isD
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approximated as

(3.10) ytj = ytj +

\int t

0
fj(x\tau j1 , x\tau j2 , . . . , x\tau jnj

)d\tau ,

and the expression for mathematical expectation is given as

(3.11) E[\scrG (ytj )] =

\int \int 
. . .

\int 
\Omega j\bfx 

\scrG (xtj1 , xtj2 , . . . , xtjnj
)dPj .

At any instance, the mathematical for xt is written as

(3.12) E[\scrG (xt)] =
m\bigoplus 
j=1

E[\scrG (ytj )].

Under this decomposition scheme a particular state is allowed to participate in a single
cluster only. Next, this concept of WCS is extended to formulate the propagation and moment
equation for state variable xt \in \BbbR n for dynamic systems exhibiting strong coupling.

3.3.2. Strongly coupled subsystems. To define an SCS, a new state-space decomposition
scheme is proposed with the following assumptions:

\bullet A state xi, i = 1 to n, can participate in more than one cluster.
\bullet For each state, we quantify its association with a cluster. Instead of a binary 0  - 1
association, we propose a fuzzy association between 0 and 1. Such a scheme can
incorporate both decoupled and overlapping clusters.

\bullet The number of clusters is determined from the initial condition uncertainty and the
associated dynamics for every run.

The association of the state x in a particular cluster j is defined by the variable zj \in \BbbR n,
zj = \{ z1j , z2j , . . . , znj\} , where zij , i = 1, to n denotes the association of the state xi in cluster
j. The variable z has the following properties:

\bullet \forall i = 1 to n and j = 1 to m, 0 \leq zij \leq 1,
\bullet 
\sum m

j=1 zij = 1.
Under this decomposition scheme, the state random variable x is represented in each

cluster j by the independently distributed component xj . A state xi has either 0, 1 (full) or
partial association with a cluster. Thus, xi is represented by a linear combination of xji 's, and
its association zij , j = 1, to m is given as

(3.13) xi =
m\sum 
j=1

zijx
j
i .

In the vector notation the state vector is given as

(3.14) x =
m\sum 
j=1

zj \odot xj ,
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where \odot represents the element-to-element or Hadamard product and xj , zj \in \BbbR n are n-
dimensional random vectors. As mentioned earlier, for any two clusters j1, j2 = 1, to m,
j1 \not = j2, we assume xj1 \bot \bot xj2 .

An SCS is therefore defined as the subset xp of xj that is participating in cluster j,

(3.15) xpj = \{ xi \in x| zij > 0\} .

A complimentary of the SCS is the nonparticipating variables of a cluster j defined as

(3.16) xnpj = \{ xi \in x| zij = 0\} .

The values of Z matrix (Z = \{ zij\} ) can be tabulated as shown in Table 3.1.

Table 3.1
The association values zij tabulated in the matrix form.

XXXXXXXXXStates
Clusters

1 2 . . . m

1 z11 z12 . . . z1m
2 z21 z22 . . . z2m
... . . . . . .

... . . .
n zn1 zn2 . . . znm

The detailed theory and application of SCS for enabling UQ are discussed in subsequent
subsections.

3.4. Identification of SCS: Linearization and clustering. The combination of lineariza-
tion and clustering technique facilitates the decomposition of the state space vector x of the
overall dynamical system into SCSs. In our earlier work [35], scalable dynamical systems have
been studied extensively, whereby it has been shown that appropriate linearization converts
a dynamical system into an undirected graph adjacency matrix. This adjacency matrix takes
the form of a block diagonal matrix. Suitable graph clustering techniques can then be used
to identify the discernible blocks. These blocks correspond to the WCSs [33, 34]. The best
possible technique of linearization that gives a better approximation of a nonlinear system
has also been discussed in our earlier work [35]. The method for identifying SCSs uses a
similar approach but a different clustering algorithm (described next). Given a nonlinear ve-
locity function f(xt) defined at a particular instance xt, an approximate linear form is given
as [35, 41],

(3.17) f(xt) = bsl +Asl(xt  - \mu t),

where

(3.18) min
Asl,bsl

J =

\int 
\Omega t

| | f(zt) - Asl(zt  - \mu t) - bsl| | 2p\bfx t(z)dz.
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The estimates of this model is given by the stationary solutions to the optimization prob-
lem, given as

(3.19)

\partial J

\partial Asl
= 0 \Rightarrow Asl E[(xt  - \mu t)

T (xt  - \mu t)] - E[f(xt  - \mu t)
T ] = 0

\Rightarrow Asl = E[f(xt  - \mu t)
T ]P - 1

\bfx t\bfx t
,

\partial J

\partial bsl
= 0 \Rightarrow bsl  - E[f ] = 0

\Rightarrow bsl = E[f ].

The estimated linear system matrix Asl is used as the graph adjacency matrix. Given Asl,
a suitable graph clustering technique can be used to decouple the state space into the SCSs.
Due to its ease of application and accuracy in estimating the graph clusters, a modification
of the Louvain Modularity maximization method [10, 11] is used for detecting the cluster
structure. Given the linear system matrix, the normalized graph adjacency W \in \BbbR n\times n is
formulated as

(3.20) Wi,j = 0.5 \ast (| Asl| + | AT
sl| ).

The cluster structure Z is estimated by solving the following maximization problem:

(3.21)

max
zic

QC
ov =

1

2n

\sum 
c\in C

i, j \in c

\biggl[ 
Wij  - 

1

2n

\biggr] 
zi,czj,c

s.t.

0 \leq zic \leq 1 \forall c \in C,

| C| \sum 
c=1

zic = 1,

zic =

\sum 
k\in cWik\sum 

c\prime \in Ci

\sum 
k\in c\prime Wik

,

and Z = [zij ] \in \BbbR n\times m, m \ll n contains the fuzzy association of a node of a graph in a
particular community. The variables of Z that are below a certain threshold \epsilon are converted

to 0, and the rows of the modified matrix are normalized to satisfy the constraint
\sum | C| 

c=1 zic = 1.
This association matrix Z is used to model the propagation function for the SCSs under the
principle of overlapping decomposition.

3.5. Propagation of a random sample \bfitx \in \Omega . The computational scheme for solving
a scalable first-order ODE defined in section 3.1 uses the cluster matrix Z = [zij ] \in \BbbR n\times m

obtained from solving (3.21). Each random sample x \in \BbbR n is carefully partitioned into m
overlapping clusters. Subsequently, the overall dynamical system is also broken down into
m independent equations. The state variable x is a union of overlapping variables xno and
nonoverlapping variables xoi :

(3.22)

xno = \{ xi \in x| zij = 1\forall j = 1 to m\} ,
xo = \{ xi \in x| 0 < zij < 1 \forall j = 1 to m\} ,
xno =

\bigcup 
j

xnoj xnoj1 \cap xnoj2 = \emptyset .
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836 MUKHERJEE, RAI, SINGLA, SINGH, AND PATRA

The xnoj represents the nonoverlapping variable participating in cluster j. Thus, the nonover-
lapping variables participate in only one of the m clusters, while the overlapping variables can
participate in more than one cluster. This participation helps in defining the propagation
equation for each cluster. Each overlapping variable xoi is assumed to be a weighted sum of
independently distributed auxiliary variables x

oj
i 's, such that

(3.23) xoi =
\sum 
j

x
oj
i zij .

Equation (3.23) is in adherence with (3.14). In a cluster j, the overlapping variables and
auxiliary variables form the propagating differential equation. These equations can be written
differently based on whether the given system is a linear or nonlinear system.

3.5.1. Linear system. A linear system for the state variable x \in \BbbR n is represented by a
constant square matrix of size n\times n as given in (3.24),

(3.24) \.x = Ax+ b.

The above equation is decomposed into m independent equations. The overlapping and
nonoverlapping variables xoj and xnoj are identified for each cluster from the matrix Z. Each
cluster j is represented by the following linear equation:

(3.25)

\biggl[ 
\.xoj

\.xnoj

\biggr] 
= Aj

\biggl[ 
xoj

xnoj

\biggr] 
.

The matrix Aj contains the coefficients of the variables xoj and xnoj from (3.24).

3.5.2. Nonlinear system. A general decomposition scheme for a nonlinear system as rep-
resented in (3.26) is difficult to achieve:

(3.26) \.x = f(x).

An easier approach is to formulate the approximate linear system as given in (3.17) and
follow the decomposition scheme as given in section 3.5.1. However, such a linear model might
not capture all the behaviors of a complex nonlinear system.

To establish a generalized scheme for decomposition of x, the function f(x) is rewritten
in each cluster j as

(3.27) f(x) = fj(x
oj ,xnoj ) + gj(x

oj ,xnoj ,xnpj ) + hj(x
npj ).

The propagation equation for cluster j is then written as

(3.28)

\biggl[ 
\.xoj

\.xnoj

\biggr] 
= fj(x

oj ,xnoj ) +\bigtriangledown \bfx npj gj(x
oj ,xnoj ,xnpj )| \bfx npj=\bfx npj (0).

After the simulation of the m independent equations in parallel for either of the linear or
nonlinear system, the overall state variable x is computed from (3.14).D
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3.6. Hadamard product and multivariate statistics. Once the statistical properties of
the SCSs are determined from the propagation and moment equations as given in section 3.5,
the first- and second-order moments for a state variable xi under the formulation of (3.13) is
given as

(3.29) E [xi] = E

\left[  m\sum 
j=1

zijxi| j

\right]  =
m\sum 
j=1

zijE [xi| j]

and

(3.30) E
\bigl[ 
x2i

\bigr] 
= E

\left[  \left(  m\sum 
j=1

zijxi| j

\right)  2\right]  =
m\sum 
j=1

z2ijE
\bigl[ 
x2i | j

\bigr] 
+

m - 1\sum 
j=1

m\sum 
k=j+1

zijzikE [xi| j]E [xi| k] .

Thus the covariance formulation is given as

(3.31) var(xi) =

m\sum 
j=1

z2ijvar(xi).

Similarly, a general expression for any \alpha th order moment can be written using multinomial
expansion as

(3.32)

E [x\alpha i ] = E

\left[  \left(  m\sum 
j=1

zijxi| j

\right)  \alpha \right]  = E

\left[  \sum 
k1+k2+\cdot \cdot \cdot +km=\alpha 

\biggl( 
\alpha 

k1, k2, . . . , km

\biggr) \prod 
1\leq j\leq m

x
kj
i | j zkjij

\right]  
=

\sum 
k1+k2+\cdot \cdot \cdot +km=\alpha 

\biggl( 
\alpha 

k1, k2, . . . , km

\biggr) \prod 
1\leq j\leq m

z
kj
ij

\prod 
1\leq j\leq m

E
\Bigl[ 
x
kj
i | j

\Bigr] 
.

For the state vector xt, the moment equations for the first two order under the formulation
of (3.14) are given as

(3.33) E [xt] = E

\left[  m\sum 
j=1

zj \odot xt| j

\right]  =
m\sum 
j=1

zj \odot E [xt| j]

and

(3.34)

E
\bigl[ 
xtx

T
t

\bigr] 
=

m\sum 
j=1

E
\Bigl[ 
(zj \odot xt| j) (zj \odot xt| j)T

\Bigr] 
+

m - 1\sum 
j=1

m\sum 
k=j+1

E
\Bigl[ 
(zj \odot xt| j) (zk \odot xt| k)T

\Bigr] 
=

m\sum 
j=1

\bigl( 
zjz

T
j

\bigr) 
\odot E

\Bigl[ 
xt| j xt| jT

\Bigr] 
+

m - 1\sum 
j=1

m\sum 
k=j+1

\bigl( 
zjz

T
k

\bigr) 
\odot E [xt| j]E [xt| k]T .
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Thus, the covariance matrix is given as

(3.35) cov(xt) =

m\sum 
j=1

\bigl( 
zjz

T
j

\bigr) 
\odot cov (xt| j) .

Furthermore, the moment generating function (mgf) for xi can be written as

(3.36)

Mxi(\tau ) = E [e\tau xi ] = E
\Bigl[ 
e\tau 

\sum m
j=1 zijxi| j

\Bigr] 
=

m\prod 
j=1

E
\Bigl[ 
e\tau (zijxi| j)

\Bigr] 
=

m\prod 
j=1

Mxi| j(zij\tau ).

Hence, the mgf of xt is given as

(3.37)

M\bfx t(\bfittau ) = E
\Bigl[ 
e\bfittau 

T\bfx t

\Bigr] 
= E

\Bigl[ 
e\bfittau 

T
\sum m

j=1 \bfz j\odot \bfx t| j
\Bigr] 
=

m\prod 
j=1

E
\Bigl[ 
e(\bfz j\odot \bfittau )T\bfx t| j

\Bigr] 
=

m\prod 
j=1

M\bfx t| j(zj \odot \bfittau ).

In this current work, (3.33) and (3.35) have been used to estimate the statistical properties
of the state variable x obtained from the solution to (3.6).

3.7. Integration with nonintrusive spectral projection methods. The linearization and
clustering paradigm can be easily integrated with any of the Non-Intrusive Spectral Projection
(NISP) methods of UQ. The representation of the state variable x| j by a multidimensional
truncated Polynomial Chaos Expansion (PCE) is given as

(3.38) x| j =
P\sum 

k=0

ck\Phi k(\xi 1, . . . , \xi n),

where, P + 1 =
\bigl( 
n + p

p

\bigr) 
are the number of PC points and p is the maximum order of the

class of orthogonal polynomial \Phi . Once the coefficients ck's are determined, quadrature-based
methods such as full-tensor or sparse-grid collocation methods are applied to generate samples
from the orthogonal polynomials \Phi k's.

The numerical integral computation by quadrature rule involves a generation of quadrature
points and associated weights [\scrX i,Wi]'s for each orthogonal polynomial \Phi k.

3.8. Recomputation of cluster structure by solving the inverse UQ problem. In this
section, the different subroutines are grouped together to describe the overall framework. The
linearization and clustering method described in section 3.4 is coupled with the standard UQ
method of Unscented Kalman Filter (UKF) [23] to analyze a high-dimensional system defined
in section 3.1. UKF has been the preferred method of UQ owing its speed and accuracy inD
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estimating moments up to the second order of a Gaussian random vector by generating fewer
sample points. UKF proposes the following deterministic formulation for generating Sigma
Points from a Gaussian random variable x \sim \scrN (\mu ,\Sigma ),x \in \BbbR n:

(3.39)

\scrX 0 = \mu , W0 = \kappa /(n+ \kappa ),

\scrX i = \mu +
\Bigl( \sqrt{} 

(n+ \kappa )\Sigma 
\Bigr) 
i
, Wi = 1/2(n+ \kappa ),

\scrX i+n = \mu  - 
\Bigl( \sqrt{} 

(n+ \kappa )\Sigma 
\Bigr) 
i
, Wi+n = 1/2(n+ \kappa ),\bigl( \sqrt{} 

(n+ \kappa )\Sigma 
\bigr) 
i
is the ith row or column of the matrix square root of (n + \kappa )\Sigma . These points

accurately estimate the moment of x up to the second order. These moment equations are
given as

\mu =
2n+1\sum 
i=1

Wi\scrX i,

\Sigma =

2n+1\sum 
i=1

Wi(\scrX i  - \mu )(\scrX i  - \mu )T .

Due to the coupling between the state variables, it is assumed that the cluster structure
may change with time. Subsequently, there is a requirement of changing the cluster structure
after a finite time evolution of the SCSs. This time is determined by the availability of
measurement data. Measurements or observations are obtained from the actual running of
the system at different time intervals. The measurement data is used to periodically update the
statistical properties of the state variables using the UKF. The updated mean and covariance
is used as the uncertainty information required to cluster the state space for the next finite
time interval until the next measurement becomes available. All the above mentioned methods
are combined to analyze a given large system. The different steps involved are as given below:

1. Given the problem

(3.40)
\.xt = f(xt), xt0 = x0,
zt = xt + \nu ,

where zt is the measurement at a given time, and \nu \sim \scrN (0, R\bfz ) is the measurement
error.

2. At a time t0, the nonlinear system is linearized as

(3.41) f(xtk) = Aslxtk + bsl

and clustered as per methods described in section 3.4. At the end of this step, the
number of subgroups or clusters in the state variables is identified, along with the
association matrix Z as given in Table 3.1.

3. The state-space is decomposed into SCS from the values of the association matrix Z
using the method of mapping described in section 3.5.

4. Sigma points are generated using (3.39) from the reduced order SCSs. The submanifold
for each SCS is propagated as described in section 3.5 up to a certain time tk. The
mean and covariance for each SCS are estimated using (3.40).D
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5. Once the UQ of all the SCSs is complete, the mean and covariance of xtk are computed
using (3.33) and (3.35).

6. Steps 4 and 5 are continued up to a time tk+h until a measurement ztk+h is available.
Once a measurement update is available, the mean and covariance values are updated
using the following steps of the UKF:

(a) The innovation covariance is then computed as

(3.42) P\nu \nu = R\bfz + Pk+h| k+h - 1.

(b) The cross correlation matrix is computed as Pk+h| k+h - 1.

(c) The Kalman gain is computed as

(3.43) K = Pk+h| k+h - 1P
 - 1
\nu \nu .

(d) The measurement update is carried out as

(3.44)
\mu k+h| k+h = \mu k+h| k+h - 1 +K(ztk+h  - \mu k+h| k+h - 1),

Pk+h| k+h = Pk+h| k+h - 1  - KP\nu \nu K
T .

(e) The above defined recalibration of mean and covariance helps in updating the
cluster structure of x. Using the updated statistical properties and the veloc-
ity function f(\cdot ), the association matrix Z is recomputed using the methods
described in section 3.4. The state variables are further mapped into clusters
using the method of mapping (section 3.5). Steps 2--5 are repeated, and step 6
is used when a measurement is available. These steps are repeated in iterative
fashion until the whole analysis is complete.

4. Numerical example: High dimensional diffusively coupled Van der Pol oscillators.
The state space equations of weakly coupled Van der Pol Oscillators is given as [49]

(4.1)
\.xi = yi + \epsilon (xi - 1  - 2xi + xi+1),
\.yi = \mu (1 - x2i )yi  - xi,

i = 1, 2, . . . , N.

The system in (4.1) is linearized and the state space is clustered following the methods de-
scribed in sections 3.4 and 3.5. With e = 0, the equilibrium point for any set of parameters for
an individual oscillator is [0 0]T . With slight perturbation, the system repels from the equilib-
rium point and orients itself around two steady convections given. To study the effectiveness
of our proposed methodology, 42 test cases of the problem in (4.1) are considered by taking
seven values of \epsilon = \{ 0.1, 1, 5, 10, 20, 50, 100\} and six values of N = \{ 5, 10, 25, 50, 100, 250\} . The
value of the \epsilon is kept very low to introduce a weak coupling between the oscillators. Strong
coupling induces change in the behavior of the individual oscillator. The changing cluster
structure needs to be identified with time to avoid accumulation of error. Uncertainties in theD
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state variables \{ \.xi, \.yi\} are introduced by random sampling from \scrN (0, 1). Table A.1 shows the
average mean of error in propagation obtained for our proposed UQ method for some of the
test cases.

4.1. Computational advantage in integration with quadrature-based methods. The
computational advantage of the SCS-based decomposition scheme can be leveraged if the
underlying UQ methodology used has an exponential or high-order polynomial complexity.
Quadrature (or Cubature) based methods [2, 47] involve a deterministic scheme to generate
the pair of sigma points or collocation points [\scrX i,Wi] similar to (3.39) depending on the
type of probability distribution function [1]. The high-dimensional cubature methods such
as Gaussian cubature [2], sparse-grid cubature [19], and MC [13] requires the generation of
collocation points \scrN to exactly compute moments of multivariate polynomial functions up to
order d. For UKF formulation given in (3.39), N = 2n + 1 for d = 3. Table 4.1 down the
number of collocation points N required to solve the high-dimensional UQ problem for the
system given in (4.1) for Gaussian cubature and sparse-grid collocation method for d = 3.
Also, the number of collocation points required for SCS-based decomposition is also listed.

Table 4.1
Collocation points required for Gaussian Cubature, Sparse-grid collocation along with SCS-based decompo-

sition.

Size of the problem Gaussian Quadrature (GQ) Sparse-grid Collocation (SG) Number of clusters GQ with SCS SG with SCS

10 32768 286 5 20 50
20 1.049E+06 1771 10 40 100
50 1.126E+15 23426 25 100 250
100 1.268E+30 176851 50 200 500

5. Numerical example: Shallow water equation. The tidal water flow in a long nar-
row channel with varying bathymetric depth (Figure 5.1) is modeled by the Shallow Water
Equations (SWE) given as [50]

(5.1)

\partial h

\partial t
+D

\partial u

\partial x
+
\partial D

\partial x
u = 0,

\partial u

\partial t
+ g

\partial h

\partial x
+ cfu = 0,

h(x = 0, t) = hb(t),
h(x, t = 0) = 0,
u(x, t = 0) = 0,
h(x = L, t) = 0,

where h denotes the water surface and u is the flow velocity along the channel. The model is
used to study storm surges and has been researched in details to study the effect of such surges
in long narrow channels [50]. The water wave is under the influence of thesurge h(0, t) = hb(t).D
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Figure 5.1. Schematic of the Tidal Water Flow.

The slope is assumed as \partial D
\partial x = \theta (x) to further simplify the system. To solve the problem, (5.1)

is discretized as per the Leendertse and Stelling scheme [29, 45, 50, 52] as follows:

(5.2)

hk+1
i  - hki
\bigtriangleup t

+
1

2
Di

uk
i+ 1

2

 - uk
i - 1

2

\bigtriangleup x
+

1

2
Di

uk+1
i+ 1

2

 - uk+1
i - 1

2

\bigtriangleup x
+

1

2
\theta i

\biggl( 
uk
i+ 1

2

+ uk+1
i+ 1

2

\biggr) 
= 0,

uk+1
i+ 1

2

 - uk
i+ 1

2

\bigtriangleup t
+

1

2
g
hki+1  - hki

\bigtriangleup x
+

1

2
g
hk+1
i+1  - hk+1

i

\bigtriangleup x
+

1

2
cfu

k
i+ 1

2

+
1

2
cfu

k+1
i+ 1

2

= 0,

hk0  - hb(k\bigtriangleup t) = 0,
h0i = 0,
u0i = 0,

uk
N+ 1

2

= 0.

Equation (5.2) is recast as a state space equation given by

(5.3)
\=Dxk+1 = \=Axk + \=Buk,
hx+1 = \=Cxk+1,D
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where

(5.4)

xk =

\left[             

hk0
uk1

2

hk1
uk
1+ 1

2
...
hkN
uk
N+ 1

2

\right]             
, hk =

\left[     
hk0
hk1
...
hkN

\right]     ,

\=D =

\left[         

1 0 0 0 0 . . . 0
 - g

2\Delta x
1
\Delta t +

1
2 cf

g
2\Delta x 0 0 . . . 0

0  - Di
2\Delta x

1
\Delta t

Di
2\Delta x + 1

2\theta i 0 . . . 0
...

...
...

...
... . . .

...

0 0 0 0  - Di
2\Delta x

1
\Delta t

Di
2\Delta x + 1

2\theta i
0 0 0 0 0 0 1

\right]         
,

\=A =

\left[         

0 0 0 0 0 . . . 0 0
g

2\Delta x
1
\Delta t  - 

1
2 cf  - g

2\Delta x 0 0 . . . 0

0 D
2\Delta x

1
\Delta t  - D

2\Delta x  - 1
2\theta i 0 . . . 0

...
...

...
...

... . . .
...

0 0 0 0 D
2\Delta x

1
\Delta t  - D

2\Delta x  - 1
2\theta i

0 0 0 0 0 0 0

\right]         
,

\=B =

\left[         

1
0
0
...
0
0

\right]         
,

\=C =

\left[       
1 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 0 0 0 1 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . 1 0

\right]       .
5.1. Results for a deterministic problem setup. Reviewing the results for a deterministic

case, the constant slope \theta in (5.3) is set to 0. The height of the wave at the left end is provided
as an input to the equation at each time instance. The water level rises with time and the
wave moves along the stretch of the channel. It then dissipates with time once the maximum
height is reached. The discretized linear model in (5.3) is clustered by the method explained
in section 3.5. The adjacency matrix used in this case is Asl = \=D - 1 \=A. The parameters in
(5.3) are assumed to be as follows:

\bullet Length of the channel L = 60 km.
\bullet Constant Water Depth D = 10 m.D
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\bullet Friction constant cf = 0.0002 in 1/sec.
\bullet Total time T = 240 min.

The discrete model in (5.2) is scaled using a spatial discretization of N = 80, with \bigtriangleup x =
L/(N + 0.5) and a temporal discretization of \bigtriangleup t = 300s. Thus, the number of time steps is
80. Figure 5.2 shows the analysis of (5.3) using the full model and the clustered model given
by the method of clustering. For the given test setup, the clustered model shows a visual
accuracy as compared to the true simulation.

Figure 5.2. True versus Estimated solution using SCS-based decomposition for a deterministic test case.

In the subsequent section, (5.3) is solved for the same time limit of T = 400 mins and the
length of the channel L = 60 km. The number of discrete spatial points N has been varied
from 150 to 1200, and temporal discrete points Tstep = T/\bigtriangleup t has been ranged from 60 to
1200. To test the accuracy of the discrete model for solving the physical system, the stability
and convergence of the discrete model is tested for the above resolutions of discretization.

5.2. Stability conditions. The stability conditions for a discretized model of (5.10) is
defined by the Von Neumann theory [9]. This condition puts a restriction on the degree of
discretization for (5.2). To derive the condition, the following nondimensional variables areD
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defined:

(5.5) \~x =
x

L
, \~t =

t

T
, \~h =

h

E
, \~u =

u

U
.

Thereafter, the following relations are defined:

(5.6) L2 = DgT 2, E2 =
DU2

g
, T =

\beta 

cf
,
TU

E
= \alpha .

Introducing (5.5) and (5.6), we see that (5.1) yields the set of the following dimensionless
equations:

(5.7)

\partial \~h

\partial \~t
+
\partial \~u

\partial \~x
+ \theta \alpha \~u = 0,

\partial \~u

\partial \~t
+
\partial \~h

\partial \~x
+ \beta \~u = 0.

The solution to (5.7) is expressed in terms of discrete Fourier modes as

(5.8)
\~hki = Ek exp(jkxi\bigtriangleup x),
\~uk
i+ 1

2

= Uk exp(jkx(i+
1
2)\bigtriangleup x), j2 =  - 1.

Putting the expression for \~hki and \~uki+1 into the dimensionless form of (5.2), we get

(5.9)
Ek+1  - Ek =  - j \bigtriangleup t

\bigtriangleup x(U
k + Uk+1) sin

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
 - \theta \alpha 1

2 \bigtriangleup t(Uk + Uk+1) exp
\Bigl( 
j kx\bigtriangleup x

2

\Bigr) 
,

Uk+1  - Uk =  - j \bigtriangleup t
\bigtriangleup x(E

k + Ek+1) sin
\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
 - \beta 1

2 \bigtriangleup t(Uk + Uk+1).

Equation (5.9) is expressed in the matrix form as

(5.10)

\biggl( 
Ek+1

Uk+1

\biggr) 
= A

\biggl( 
Ek

Uk

\biggr) 
,

where
(5.11)

A = c
\left[   - j exp\Bigl( j kx\bigtriangleup x

2

\Bigr) 
sin

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
\alpha \bigtriangleup t2\theta \bigtriangleup x+ 2 sin2

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
\bigtriangleup t2  - \beta \bigtriangleup t\bigtriangleup x2  - 2\bigtriangleup x2 2\theta \alpha \bigtriangleup t exp

\Bigl( 
j kx\bigtriangleup x

2

\Bigr) 
\bigtriangleup x2 + 4j \bigtriangleup t\bigtriangleup x sin

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
4j \bigtriangleup t\bigtriangleup x sin

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
 - j exp

\Bigl( 
j kx\bigtriangleup x

2

\Bigr) 
sin

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
\alpha \bigtriangleup t2\theta \bigtriangleup x+ 2 sin2

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
\bigtriangleup t2 + \beta \bigtriangleup t\bigtriangleup x2  - 2\bigtriangleup x2

\right]  ,
c =

1

j exp
\Bigl( 
j kx\bigtriangleup x

2

\Bigr) 
sin

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
\alpha \bigtriangleup t2\theta \bigtriangleup x - 2 sin2

\Bigl( 
kx\bigtriangleup x

2

\Bigr) 
\bigtriangleup t2  - \beta \bigtriangleup t\bigtriangleup x2  - 2\bigtriangleup x2.

By Von Neumann theory of stability analysis [9], for a given resolution of spatio-temporal
discretization or a combination of \bigtriangleup x and \bigtriangleup t, the system is stable if the norm of the matrix
A is less than 1. The discrete model in (5.2) has been found to be stable for all the combinations
for N and \bigtriangleup t that have been chosen in subsection 5.1.D
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5.3. Convergence analysis. Once the discrete model is determined to be stable for a
varying resolutions of discretization, the convergence analysis is performed. The discrete
model is supposed to converge to the exact solution with increase in resolution. Since there
is no analytic solution available, a very high resolution discretization with N = 3200 and
\bigtriangleup t = 15s is chosen. The true solution for the height of the water level is given by a 1601\times 3201
matrix Utrue. This matrix records the height at each point along the x-direction for each
time instance. For a given resolution of discretization r = (\bigtriangleup t,\bigtriangleup x), the same matrix Ur is
computed and upscaled it to the resolution of the matrix Utrue as \^Ur. The rate of convergence
for r is given as

(5.12) errr =
\bigm\| \bigm\| \bigm\| Utrue - \^Ur

Utrue

\bigm\| \bigm\| \bigm\| 
2
.

Figure 5.3 depicts the rate of convergence for different resolutions of discretization. The
convergence rate decreases with increase in resolution of the discrete model. Following the
result of convergence and stability, it can be concluded that the discrete model in (5.2) can
approximate the solution to the continuous model in (5.1).

5.4. Cluster length versus resolution of discretization. In this section, the cluster struc-
tures for different test setups are determined using the methodology discussed in section 3.4
to give a better physical interpretation of the state-space clusters. The state space matrix
D - 1A as per given in (5.4) is clustered. It is to be noted that for a given discrete point xk
along the spatial domain, there are two state variables ui and hi+ 1

2
. The clustering on the

D - 1A gives us the association vectors zj 's of the state space x in m clusters, as discussed in
section 3.4. To have a meaningful insight into the physical meaning of the clusters, the length
of the first cluster has been chosen as the subject of interest. The length of the first cluster is
given as

(5.13) \scrL 1 =

\sum 2(N+1)
i=1 \BbbI 1(z1i)
2(N + 1)

L, \BbbI 1(z1i) =

\Biggl\{ 
1 z1i = 1,

0 otherwise.

The length \scrL 1 in kilometer represents the physical space along the channel length. Since
both D and A are functions of \bigtriangleup t and \bigtriangleup x, it can be assumed that \scrL 1 is also a function of
both \bigtriangleup t and \bigtriangleup x. Variation in the cluster lengths with different resolutions of discretizations
is illustrated in Figures 5.4 and 5.5.

Figure 5.4 shows the variation of the cluster length by varying N = 80 to 200 for a constant
\bigtriangleup = 300 s. The plots show that the cluster length is almost constant for a given \bigtriangleup t and is
unaffected by the change in N . The cluster lengths represent the physical space in which the
waves can travel for a given time independent of another cluster. This length is bound to
change with an increase in \bigtriangleup t or decrease in Tstep.

Figure 5.5 shows a very small variation in the values of \scrL 1 by varying \bigtriangleup = 75 to 300s for a
constant N = 80. The plots show that the cluster length varies different values of\bigtriangleup t. Detailed
variation of the length \scrL 1 with change in r is shown in Figure 5.6. This analysis provides
an insight into the physical meaning of the clusters. The clusters correspond to decomposed
domain that can be analyzed in parallel. The variation of the cluster lengths are consistentD
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Figure 5.3. Rate of Convergence versus Discretization Resolution.

with the actual physical system. The subsequent UQ is carried out on the clustered model of
(5.3) rather than the whole system.

5.5. Uncertainties associated with the model. The bathymetric height of the system is
assumed to be random for the purpose of uncertainty analysis. The height and subsequently
the water depth D(x) is assumed to be a Gaussian random field in one dimension. The mean
of D(x) is assumed to have a bimodal profile shown in Figure 5.7 and the covariance function
is assumed to be given as

(5.14) C(x, y) = exp

\biggl( 
 - | x - y| 

a

\biggr) 
.

D(x) admits a spectral decomposition as

(5.15) D(x) = \mu (x) +

\infty \sum 
i=1

\sqrt{} 
\lambda i\psi i(x)Di(x),

where Y \sim \scrN (0, 1) are i.i.d. Gaussian random variables and \lambda i, \psi (x) is the solution to theD
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(a) Cluster Structure with N = 80. (b) Cluster Structure with N = 100.

(c) Cluster Structure with N = 160. (d) Cluster Structure with N = 200.

Figure 5.4. Variation of Cluster length with varying spatial discretization and constant temporal discretiza-
tion of \bigtriangleup t = 300s.

eigenvalue problem

(5.16)

\int L

0
C(x1, x2)\psi i(x2)dx2 = \lambda i\psi i(x1).

The expansion of (5.15) is truncated according to the decay of the eigenvalues \{ \lambda i\} s. The
random field D(x) is expressed in terms of the first M eigenvalues as

(5.17) D(x) = \mu (x) +

M\sum 
i=1

\sqrt{} 
\lambda i\psi i(x)Di(x).

The eigenvalue trend for a = 0.1L is depicted in Figure 5.8. This trend helps us in
truncating the expression for KL expansion. From the figure, M can be approximated as 12.
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(a) Cluster Structure with dt = 75. (b) Cluster Structure with dt = 150.

(c) Cluster Structure with dt = 225. (d) Cluster Structure with dt = 300.

Figure 5.5. Variation of Cluster length with constant spatial discretization N = 80 and varying temporal
discretization.
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Figure 5.6. Cluster Length versus Discretization Resolution.
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Figure 5.7. Mean of the Bathymetric profile.
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Figure 5.8. Trend of Eigenvalue for exponential covariance function with a = 0.1L.
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Measurements for hk are generated using the deterministic model explained in the sec-
tion 5.1. The following section details the method of clustering and UQ applied to estimate
the uncertainties in the state hk and uk.

5.5.1. Clustering and uncertainty quantification. The state space of the model includes
the discretized height of the water level hk and the velocity uk. The uncertainty in hk and
uk is attributed to D(x) and the initial state uncertainty. To cluster the state space, the
statistically linearized matrix is obtained from the state space (5.3) as follows:.

(5.18) Asl =

\int L

0

\=D - 1(D(x)) \=A(D(x))dPD(x).

For simplicity, the linearized matrix is assumed as Asl = \=D - 1 (E [D(x)]) \=A (E [D(x)]). For
N = 80 and \bigtriangleup t = 300s, the cluster structure of Asl is shown in Figure 5.9. The clustering out-
put results in five almost equal sized clusters. The clustering decomposes the one-dimensional
domain into five overlapping domains Dj , j = 1, 2, . . . , 5. Hence, the bathymetric profile is
also decomposed into five random fields.

Figure 5.9. Cluster Structure for Shallow Water Model for uncertain bathymetry.

The effect of clustering the state space is reflected from the eigenvalue plot of the clustered
random field. Figure 5.10 shows the eigenvalue plot for the bathymatry random field clustered
into five overlapping fields. It is observed that each cluster requires a lesser number of eigen-
value for the truncated expansion for the random field. For each cluster j, the bathymetryD
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for the domain Dj can be expressed as

(5.19) Dj(x) = f(x) +

Mj\sum 
i=1

\sqrt{} 
\lambda i\psi i(x)Di(x), x \in Dj .

The value of Mj is approximately 4 for each cluster. This reduces the total number of
samples required for the random field generated by any standard quadrature method that is
used to estimate high-order moments. The state variables corresponding to the water level hk

and the velocity uk are also clustered. The number of states in each cluster can be estimated
from Figure 5.9.

(a) Cluster I. (b) Cluster II. (c) Cluster III.

(d) Cluster IV. (e) Cluster V.

Figure 5.10. Eigenvalue plot for the bathymetry random field clustered into five overlapping fields.

The corresponding filtering problem is solved as described in section 3.8. The effect of
filtering is displayed by plotting the observed and estimated height with \pm 3\sigma limit. Figure 5.11
shows the results of filtering out noise with the availability of measurement.D
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(a) Time= 300s. (b) Time= 9300s. (c) Time= 21300s.

Figure 5.11. Results of the filtering problem. The noise is filtered out with availability of measurement for
different time.

6. Conclusion. This paper formulates a clustering method to identify Strongly Coupled
Subsystems (SCSs) in high-dimensional uncertain dynamical systems. A new method of clus-
tering the state-space is developed based on overlapping community detection algorithms.
The decomposition of state-space based on outlined clustering methods facilitates effective
UQ of a high-dimensional system with fewer sample points with the help of any standard UQ
method. The method of linearization and clustering shows to be very effective in identifying
the common states. The propagation method gives low error in estimated statistical property.
The SWE model is carefully chosen for analysis in which the input at one end is propagated
throughout the model. Hence, a proper communication between the clusters is essential to
have the continuous flow of information in between two neighboring clusters over time. This
communication is established very well by the SCS-based decomposition method.

The decision to adopt this clustering method should be taken based on the problem and
physical properties of the system. It is also shown that the method drastically reduces the
computational cost when integrated with quadrature-based methods while maintaining the
accuracy. This makes the method suitable to coupled oscillator problems with varying coupling
strengths and scalable problem sizes.

The accuracy of the element-to-element or Hadamard product lies in the assumption of
linear relationship of the estimated association values with the adjacency matrix and the sta-
tistical independence of the clusters. Thus, the method accurately estimates the deterministic
as well as uncertain flow in the Shallow Water model because of the linearity in the original
model of (5.2). For a nonlinear model, the association values are to be periodically updated
with availability of measurement, or after a certain period of time.

Finally, the clustering method is proved to be effective for not only state-space decom-
position but also for clustering a random field. Each cluster of a random field is shown to
require a lesser number of eigenvalues for approximate KL expansion than the whole field.
Thus, the clustering not only aids in reduced sample points for the state space, but also for
the random field. The extension of this study to higher-order random fields (two dimensional
and three-dimensional) is the scope for future work.

Appendix A. Results of numerical experiment. We begin with Table A.1.
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Table A.1
Root Mean Squared time-averaged mean for different test setups in Coupled Van der Pol Oscillators.

N \epsilon \=e\mu 
5 0.1 0.0019

1 0.00339

5 0.00323

10 0.1 0.00082

1 0.00473

5 0.01282

20 0.01937

100 0.02112

25 0.1 0.00046

10 0.01053

20 0.01096

50 0.01131

50 0.1 0.00028

1 0.00153

5 0.00394

10 0.00519

20 0.00539

50 0.00558

100 1 0.00072

5 0.00187

10 0.00241

50 0.0026

100 0.00264

250 0.1 0.00005

1 0.00001

5 0.00027

10 0.00094
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Appendix B. Some useful results.

B.1. Result 1. Let us consider n-dimensional Gaussian random vector y \in \BbbR n with y \sim 
\scrN (\bfitmu ,\Sigma ) and mgf asM\bfy (\bfittau ) = exp

\bigl( 
\mu \prime \bfittau + 1

2\bfittau 
\prime \Sigma \bfittau 

\bigr) 
. Let us consider an arbitrary n-dimensional

vector \alpha . Under Hadamard product transformation z = \alpha \odot y , we get

(B.1)

M\bfz (\bfittau ) = E
\Bigl[ 
e\bfittau 

T (\alpha \odot \bfy )
\Bigr] 

=M\bfy (\alpha \odot \bfittau ) = exp

\biggl( 
\mu \prime (\alpha \odot \bfittau ) +

1

2
(\alpha \odot \bfittau )\prime \Sigma (\alpha \odot \bfittau )

\biggr) 
= exp

\biggl( 
(\alpha \odot \mu )\prime \bfittau +

1

2
\bfittau \prime ((\alpha \prime \alpha )\odot \Sigma )\bfittau 

\biggr) 
.

Thus, z is also a Gaussian random vector with z \sim \scrN (\alpha \odot \mu , (\alpha \prime \alpha )\odot \Sigma ).

B.2. Result 2. Let us consider a random vector y \in \BbbR n, whose pdf can be approximated
by a Gaussian mixture

(B.2) p(y) =
\sum 
i

wi\scrN (y| \mu i,\Sigma i).

The mgf of y is given as

(B.3)

M\bfy (\bfittau ) = E
\Bigl[ 
e\bfittau 

T\bfy 
\Bigr] 

=

\int 
\BbbR n

e\bfittau 
T\bfy 

\sum 
i

wi\scrN (y| \mu i,\Sigma i) dy

=
\sum 
i

wi

\int 
\BbbR n

e\bfittau 
T\bfy \scrN (y| \mu i,\Sigma i) dy

=
\sum 
i

wiM\bfy (\bfittau ;\mu i,\Sigma i).
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