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This paper presents a generalized approach to identify the structure of governing nonlinear equations of motion

from the time history of state variables and control functions. An integral form involving a low-pass filter in

conjunction with sparse approximation tools is used to find a parsimonious model for underlying true dynamics

from noisy measurement data. Two chaotic oscillatory systems as well as the well-known problem of identifying the

central force field from position-only observation data are considered to validate the developed approach. The

simulation results considered in the paper demonstrate the performance of the developed approach in learning

unknown nonlinear system dynamics accurately with fewer basis functions as compared with classical least-squares

regression techniques and emerging deep learning approaches. A comparison of the sparse identification techniques

with classical least-squares regression techniques and emerging deep learning approaches reveals the utility of the

methodology developed in the paper.

I. Introduction

T HE field of system identification has been an important disci-
pline within the automatic control area, structural engineering,

reduced order modeling and model testing [1,2]. The special process
of dynamic system identification corresponds to identifying a math-
ematical model describing a relationship between input and output of
a real system. Over the past six decades, the field of system identi-
fication has provided multiple tools for design, analysis, and control
of engineering systems. Since the initial efforts, the system identi-
fication community has sought a reliable methodology to derive a
mathematical model capturing the main characteristics of dynamic
systems. However, the most mature part of the theory deals with
linear systems using well-established techniques of linear algebra
and the theory of ordinary differential or difference equations. In
contrast, nonlinear system identification problems are still treated
mostly on a system-by-system basis. Earlier efforts in the field of
linear system identification concentrated on construction of state-
space representations of linear systems. Building upon initial work
by Gilbert [3] and Ho and Kálmán [4], several methods have been
developed to identify most observable and controllable subspaces of
the system from given input–output (I/O) data [5–15]. Subspace
methods for system identification such as the Eigensystem Realiza-
tion Algorithm (ERA) [12] and the Observer/Kalman Identification
Algorithm (OKID) [14] are used to recover minimal observable
and controllable realizations of system models of large distributed

systems from I/O data. In the last decade, the focus has been general-
izing these methods to identify time-varying linear systems [16–18]
with a step toward nonlinear system identification.
In contrast to linear system identification, nonlinear system identi-

fication problems are still treated mostly on a system-by-system basis,
with popular methods being Volterra series models [2,19,20], global–
local learning [21,22], andneural network (NN)models [23].Themain
essence of nonlinear system identificationmethods has been to expand
the nonlinear unknown function as a linear combination of basis
functions or kernels and their amplitude.Many of thesemethods differ
in their choice of basis functions and their learning methodology.
Methods like Volterra series approximation use Volterra kernels to
provide a global approximation of the underlying dynamics, whereas
global–local approximation methods merge various local approxima-
tions valid in a local region to find a global approximation of the
underlying dynamics [21]. More prevalent machine learning methods
such asmultilayeredNNs (alsoknownas deepNNs) use a composition
of nonlinear transformations to approximate the unknown I/O map-
ping. Each layer of the NN corresponds to one nonlinear transforma-
tion that is represented by a linear combination of fixed bases such as
sigmoid functions known as neurons or perceptrons. According to
Cover [24] and Kolmogorov’s theorems, multilayer NNs can serve as
universal approximators, but in actuality, they offer no guarantee on
accuracy for a reasonable dimensionality (global and distributed
approximation can be at the expense of high parametric dimension-
ality). Furthermore, the learning of parameters formultilayerNNoften
involves nonlinear optimization due to composition of multiple non-
linear transformations. All of these methods focus on improving the
approximation accuracy by increasing the number of parameters of the
models in a brute force manner by increasing the number of basis
functions, local models, and/or layers of the network. A key issue
arises because if one fixes the architecture and basis functions, the
adequacy of themethod can be deduced only after the learning process
is completed.Adaptation of the approximation architecture, not simply
adjusting weights in a fixed architecture, has emerged as the key to
convergence reliability and accuracy. Therefore, approximation capa-
bilities of state-of-the-art machine learning approaches (particularly
deep learning) in capturing the underlying physical characteristics of a
dynamic system remain poorly understood because these algorithms
are unable to learn the underlying physical features (or character-
istics) of the system.
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There is no doubt that the choice of basis functions significantly
influences the approximation accuracy and complexity of the model.
For many known physical systems, the nonlinearities can be repre-
sented by only a few terms with a judicious choice of basis functions.
In this respect,many efforts have focused on adapting the architecture
of the network by selecting appropriate models from a predefined
dictionary of models [25–29]. However, this leads to an exhaustive
search algorithm to learn the appropriate basis functions to represent
the network dynamics.
More recently, advances in compressed sensing and sparse regres-

sion have been exploited to learn appropriate basis functions from an
overcomplete dictionary of basis functions without performing an
exhaustive search [30–32]. To determine the form of the dynamics
from data, these papers collect a time history of the state and its
derivative sampled at a number of instances in time. In the casewhere
the derivative is not part of the measurement model, they construct
state derivative information by finite differencemethods,whichmake
derivative calculations susceptible to noise in measurements. After
carefully arranging relevant basis functions in a dictionary, a linear
least-squares problem is posed to find unknown coefficients of the
basis functions. To enforce sparsity, an iterative least-squares prob-
lem is solved where the dictionary size is reduced by removing basis
functions whose amplitude is lower than a prescribed threshold.
Although this sparse representation through the iterative least-
squares problem guarantees the balance between model complexity
and accuracy, the resulting algorithm is susceptible to noise in state
measurement. In [33,34], an approach named “subsampling-based
threshold sparse Bayesian regression” (Subtsbr) is presented to
accommodate high noise in the measurements for states and state
derivatives. A Galerkin formulation that involves projecting the
errors on a set of basis functions known as test functions is considered
in [35] to avoid estimating time derivatives of the state variables.
Although this formulation provides better results in the presence of
noise, the choice of test function severely affects the performance of
the algorithm. The formulation in [36] considers a direct integral form
of the dynamics for first-order systems in conjunction with a regu-
larized l1 optimization problem to find the appropriate basis func-
tions to approximate the unknown system dynamics.
As an extension of these recent formulations, themain objective of

this paper is to consider an integral formof the differential equation to
estimate unknown amplitudes of basis functions with only state and
input measurements for a first-order system [37]. Rather than a pure
integral form considered in [36], a low-pass filter is designed to avoid
infinite response at low frequencies or large time intervals. The
secondary objective of this work is to generalize this approach for
identification of second- and higher-order systems with only posi-
tion-level measurement data and systems with a control input. Fur-
thermore, the iterative least-squares problem is replaced with an
iterative regularized l1 optimization problem as used in our earlier
work on sparse collocation methods for optimal feedback control
laws [38]. This guarantees that the sparse solution is found with high
probability using convex optimization methods. The methodology is
validated by considering two nonlinear oscillators with or without
noisy measurements and on a second-order system involving a
central force field. Comparison between a deep-learning approach
and a sparse solution is presented at the end of the paper.
The structure of the paper is as follows: Section II provides a

mathematical treatment of the system identification problem, and
Sec. III provides the derivation of the developed methodology for
first- and second-order systems. Section IV shows the efficacy of the
developed approach by considering two nonlinear oscillator prob-
lems and identification of Newton’s law of gravitation through
satellite motion data. The paper concludes with a summary of results
in Sec.Vand generalization of the developed approach for the generic
order systems in the Appendix.

II. Problem Statement

This work aims to provide an extended, unified, and automatic
framework to discover governing equations underlying a dynamic
system simply fromdatameasurements, based on the assumption that

the structure of the dynamic model is governed by only a few
important terms. Considering a general dynamic model with affine
control input

_x�t� � f�x�t�� �Gu�t� (1)

where x�t� ∈ Rn represents the state of the system and u�t� ∈ Rr the
control action at time t and G ∈ Rn×r is the constant input-influence
matrix. The unknown nonlinear function f :Rn → Rn represents the
dynamics constraints for the system. The goal here is to find the
structure of the unknown function f given the time history of x�t� and
u�t� and constant control influence matrix G. Considering a set of
basis functions fϕigi�1 : : :∞, ϕi:R

n → R, f can be approximated as a
linear combination of these basis functions [2,21]:

f�x� �
X∞
i�1

αiϕi�x� (2)

where fαigi�1 : : :∞, αi ∈ Rn, is a set of unknown coefficients. There
are infinitely many choices for basis functions, such as polynomials,
trigonometric functions, and radial basis functions. A central diffi-
culty in learning f lies in choosing appropriate basis functions, and
the choice of basis functions unfortunately depends on the character-
istics of an unknown I/O map. In an appropriate basis, the equations
are often sparse in nature and the resulting model is parsimonious;
i.e., a very few of αi are nonzero. It is desired to choose the basis
functions that allow f to be representedwith as few terms in Eq. (2) as
possible [30,31]. In this respect, the summation in Eq. (2) is taken
over a finite number of N basis functions:

f�x� ≈
XN
i�1

αiϕi�x� (3)

or equivalently

f�x� ≈ αTϕ�x� (4)

where α��α1 α2 · · · αN �T ∈RN×n and ϕ�x�� �ϕ1�x� ϕ2�x� · · ·
ϕN�x��T ∈RN . Here, αi is the ith row of the matrix α. The objective
is to search a given handbook of known functions for a set that best
represents the given data. Recent advances in compressed sensing
and sparse regression [30,31,36,39] can be exploited to learn these
few nonzero terms from an overcomplete dictionary of basis func-
tions without performing a combinatorially intractable brute-force
search. The next section provides the mathematical details corre-
sponding to finding a sparse solution for α.

III. General Methodology

As stated in the previous section, the objective is to find a sparse
solution for the α 0

i s given the time histories of x�t� and u�t�. If the
time history of _x�t� is known, then one can solve for the unknown
coefficients α 0

i s through a least-squares solution. In Refs. [30–34],
different iterative algorithms are proposed to find the best set of basis
functions to represent f accurately. If the time derivative of x�t� is not
available, then one needs to reconstruct this information through time
history knowledge of x�t� via finite difference. Such an approach is
sensitive to noise in measurements of x�t� [30]. An integral formu-
lation is considered in [36] to avoid the finite difference to reconstruct
the state time derivative information. Though an integral formulation
attenuates the high-frequency content, it provides limited attenuation
at low frequencies and can lead to infinite response for a long time
integration. In this section, an alternate formulation is presented to
find unknown α 0

i s without any knowledge of _x�t�. A low-pass filter
design is considered to provide short memory and better control over
attenuation at different frequencies. First, this formulation is pre-
sented for the first-order systems and then generalized for second-
order systems.
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A. First-Order Systems

Considering a first-order system, Eq. (1) can be rewritten as

_x�t� �
XN
i�1

αiϕi�x� �Gu�t� (5)

and its componentwise unilateral Laplace transformation is

X0f
j �s� � sXj�s� − xj�0� �

XN
i�1

αj;iΦi�s� �
Xr
k�1

Gj;kUk�s�;

j � 1 : : : n (6)

where Lfxj�t�g � Xj�s�, Lfϕi�x�g � Φi�s�, Lfuk�t�g � Uk�s�,
and s is the Laplace variable. Note that ϕi�x� is an implicit function
of time, and hence the Laplace transform of this time-varying signal
can be considered. From now on, capital letters are used for functions
in the Laplace domain. X0f

j �s� is the original filtered signal (filtered
0th time). For λ1 ∈ R��, let us consider the Laplace filtering operator

I λ1 : R → R;

• ↦
•

s� λ1
(7)

Applying the operator to the signal X0f
j yields

X1f
j �s� � I λ1�X0f

j �s�� �
sXj�s� − xj�0�

s� λ1

�
XN
i�1

αi;jΦ1f
i �s� �

Xr
k�1

Gj;kU
1f
k �s� (8)

where

Φ1f
i �s� �

Φi�s�
s� λ1

and U1f
k �s� �

Uk�s�
s� λ1

(9)

The superscript “lf” corresponds to the filtered signal. Note that
Eq. (8) corresponds to the integral form of Eq. (1) of λ1 � 0. To this
end, the filtered integral formulation is a generalization of the pure
integral approach that can have an infinite response either at very low
frequency or for integration over a long time. The use of the filter
allows the analyst to introduce fading memory in the approximation
process, which allows specific control of the signal-to-noise ratio of
the signals used in the identification process. Note that this section
describes a method that uses a filter to implement a system that
approximates the derivatives at low frequencies. This filter realiza-
tion, however, could be generalized with larger degrees of design
freedom. For instance, writing ϕ1f � F�s�ϕ�x�t�� with F�s� a gen-
eral strictly passive real filter of arbitrary order would allow one to
extract the desirable signal properties of importance to the physics of
the problem. Though the development presented in this paper
assumes λ1 to be a scalar quantity, one can ideally use different filters
for different components of the state vector, with λ1 being a vector
quantity. Now, adding and subtracting λ1Xj�s� to Eq. (8) leads to

X1f
j �s� �

�s� λ1�Xj�s� − λ1Xj�s� − xj�0�
s� λ1

� Xj�s� �
−λ1Xj�s� − xj�0�

s� λ1
� Xj�s� � Yj;1�s� (10)

where

Yj;1�s� �
−λ1Xj�s� − xj�0�

�s� λ1�
(11)

Equation (11) can be rewritten as

sYj;1�s� � xj�0� � −λ1Yj;1�s� − λ1Xj�s� (12)

and its inverse Laplace transform yields

_yj;1�t� � −λ1yj;1�t� − λ1xj�t�; yj;1�0� � −x�0� (13)

Similarly, the inverse Laplace transforms for Φ1f
i and U1f

k yield the
corresponding first-order differential equations (ODEs):

_ϕ1f
i �t� � −λ1ϕ

1f
i �t� � ϕi�x�; ϕ1f

i �0� � 0; i � 1; 2; : : : ; N (14)

_u1fk �t� � −λ1u
1f
k �t� � uk�t�; u1fk �0� � 0; k � 1; 2; : : : ; r (15)

For λ1 � 0, then ϕ1f
i and u1fk result in the time integration of ϕi�x�t��

and uk�t�. For λ1 > 0, these equations correspond to a stable linear
system of equations. By appropriately choosing the λ1, one can
control how quickly the initial condition response of these equations
will go to zero. Finally, the final equation in the time domain can be
written as

x1fj �t� � xj�t� � yj;1�t� �
XN
i�1

αj;iϕ
1f
i �t� �

Xr
k�1

Gj;ku
1f
k �t� (16)

Note that the aforementioned equation provides a linear relationship
between filtered signals x1fj �t�,u1fk �t�, andϕ1f

i �t�. Furthermore, these
filtered signals can be constructed directly from the given time
histories of system state and control input by integrating N � r� 1

equations given by Eqs. (13–15). Stacking time histories for x1fj �t�,
ϕ1f
i �t�, and u1fk �t� leads to

x1fj � ϕ1fTαj � �Gju
1f�T (17)

where x1fj ∈ Rl×1, ϕ1f ∈ RN×l, αj ∈ RN×1, Gj ∈ R1×r, and u1f ∈
Rr×l, with l being the number of data points. In this equation, αj is the
jth column of the coefficient matrix α introduced in Eq. (4), andGj is
the jth row of the coefficientmatrixG introduced inEq. (1). Now, one
can find an optimal value of coefficient vector αj by solving the
weighted two-norm minimization:

α⋆
j � min

αj

1

2
eTRe; e � x1fj − ϕ1fTαj − �Gju

1f�T (18)

TheweightmatrixR can be chosen appropriately depending upon the
noise in the measurement data. Depending upon the size of l and N,
the aforementioned optimization problem can be overdetermined or
underdetermined. In both the cases, one can find the solution with an
appropriate pseudo-inverse of ϕ1f, i.e.,

α⋆T
j � �x1fTj −Gju

1f�ϕ1f† � ~x1fϕ1f† (19)

where ~x1fj � x1fTj −Gju
1f and “†” stands for the pseudo-inverse;

ϕ1f† corresponds to the least-squares solution for the overdetermined
problem, i.e.,ϕ1f†��ϕ1fTRϕ1f�−1ϕ1fTR, whereasϕ1f† corresponds
to the minimum-norm solution for the underdetermined case, i.e.,
ϕ1f† � ϕ1fTR�ϕ1fRϕ1fT�−1. This procedure is repeated n times
(for j � 1; 2; : : : ; n) to compute the full coefficient matrix α. Note
that one can also compute an estimate for the control influence matrix
G through this procedure given that it also appears linearly in Eq. (17).
Equation (19) is a minimization problem obtained by choosing

certain collocation points. The choice of the collocation points
typically interferes with the filter parameter choices, and one should
pick the collocation points judiciously such that their spectral char-
acteristics are not coincident. This is because if they are, the filtered
states result in a null solution for the system of equations. In this
paper, a time-uniform distribution is chosen so that the spectral
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characteristics of the physics of interest are captured for each
problem.
The α⋆

j corresponds to the optimal solution in terms of minimizing
the two-norm of state output error response. However, the two-norm
solution is not guaranteed to be sparse in nature and is known to pick
all the basis functions in our dictionary especially in the case of noise-
corrupted measurements. To enforce sparsity, ideally the l0 norm of
the coefficient vector αj needs to be minimized subject to constraints
of Eq. (17). The l0 norm corresponds to the cardinality of the
coefficient vector, and its minimization leads to a nonconvex prob-
lem. However, the l0 norm minimization problem can be approxi-
mated by an iterative l1-norm minimization problem, which is
convex in nature with a guaranteed solution [39]:

min
θpj

kWpθpj k1 (20)

s:t: k ~x1f − θpTj ϕ1fk2 ≤ εk ~x1f − α⋆T
j ϕ1fk2; ε ≥ 1 (21)

where p is the iteration, θpj is the optimization variable, ~x1f is the
pseudosignal, ϕ1f is the dictionary of basis functions, and α⋆T

j is the
optimal two-norm solution derived in the previous section. Notice that
the two-norm constraint of Eq. (21) corresponds to the satisfaction of
Eq. (17). Rather than using the equality constraint of Eq. (17), a two-
norm error is bounded by the optimal pseudonorm solution, with ε
being the user-defined relaxation on two-normerror. This allowsone to
tradeoff sparsity with approximation error. Furthermore, Wp is a
diagonalmatrix containing a knownweightwi for the ith optimization
variable. Initially,wi can be chosen based upon any a priori knowledge
about the structure of f , the form of the least-squares solution, or can
simplybe chosen to be one. In the subsequent iterations, thevalueofwi

is adapted according to the following formula to penalize the coeffi-
cients that are smaller than a predefined threshold δ:

wp
i � 1

jθp−1i;j j � η
(22)

where η is a small number to avoid division by zero. This iterative
procedure is repeated unless the computed coefficients converge
within a prescribed tolerance. The solution of this iterative l1 mini-
mization problem provides us a subset of basis functions from an
overcomplete dictionary, which plays a dominant role in underlying
unknown dynamics. An optimal pseudo-inverse solution for coeffi-
cients is obtained for only this subset of basis functions. Figure 1
illustrates these steps to obtain the sparse solution. The algorithm is
given in Algorithm 1. Note that the parameter δ acts as a threshold to
separate the active basis function from the nonactive ones. In practice,
with normalized trajectories and independently of the dynamic system
considered, it is a relatively safe assumption to neglect the least
dominant basis function, i.e., the basis functions with associated
coefficient two to three orders of magnitude smaller than other basis
function coefficients. In this respect, δ is usually chosen to be at least
one order of magnitude smaller than the least dominant basis function
coefficient. For noisy I/O data, the value of δ is chosen based upon the
signal-to-noise ratio to avoid overfitting the data.A good discussion on
the choice of these hyperparameters on approximation accuracy has
been provided in [39].

B. Second-Order Systems

Derived from the rates of generalized momenta at the acceleration
level, most dynamic systems in engineering mechanics are charac-
terized by second-order differential equations. If both position and
velocity measurements are available, the second-order differential
equation can be reshaped as a first-order differential system and the
methodology presented in the last section can be applied. In this
section, the methodology presented in the last section is generalized
for the identification of the second-order systemwith time histories of
position-level measurements and control input vectors being avail-
able. Consider the following special class of second-order nonlinear

dynamic systemwith nonlinearities being a function of only position-
level state variables:

�x�t� � f�x�t�� �Gu�t� (23)

where x�t� ∈ Rn represents the state of the system and u�t� ∈ Rr the
control action at time t and G ∈ Rn×r is the constant-time input
influence matrix. Once again, the function f :Rn → Rn represents
the dynamics constraints that define the equations of motion of the
system, and our objective is to identify this nonlinear function from
time histories of x�t� and u�t�. Following the same development as
before, the unknown nonlinear function f can be expanded in terms
of a dictionary of basis functions, and Eq. (23) can be rewritten as

�x�t� �
XN
i�1

αiϕi�x� �Gu�t� (24)

In a quest to determine the analog of Eq. (17), the componentwise
Laplace transform of the aforementioned vector equation leads to

X0f
j �s� � s2Xj�s� − sxj�0� − _xj�0� �

XN
i�1

αj;iΦi�s�

�
Xr
k�1

Gj;kUk�s�; j � 1 : : : n (25)

Now, applying the integral operator I λ1 to the original signal X0f
j

yields

X1f
j �s� � I λ1�X0f

j �s�� � s2Xj�s� − sxj�0� − _xj�0�
s� λ1

�
XN
i�1

αj;i
Φi�s�
s� λ1

�
Xr
k�1

Gj;k

Uk�s�
s� λ1

(26)

For λ2 ∈ R��, applying the integral operator I λ2 to X1f
j of Eq. (26)

results in

X2f
j �s� � I λ2�X1f

j �s�� � s2Xj�s� − sxj�0� − _xj�0�
�s� λ1��s� λ2�

(27)

�
XN
i�1

αj;i
Φi�s�

�s� λ1��s� λ2�
�

Xr
k�1

Gj;k

Uk�s�
�s� λ1��s� λ2�

(28)

Algorithm 1: Iterative sparse algorithm for model selection

1: function SparseID (δ, η, ε, nbiterations, ϕ1f , ~x1f , α⋆
j )

2: Initialize weighting matrixW � IN
3: Initialize p � 0

4: while p < nbiterations do

5: Solve for θpj : minθpj kWpθpj k1 such that k ~x1f − θpTj ϕ1fk2 ≤
εk ~x1f − α⋆T

j ϕ1fk2
6: Update weighting matrix:W�i; i� � 1

jθp−1i;j j�η
7: end while

8: θj � θpj
9: for i � 1 to N do

10: if θj�i� < δ then

11: θj�i� � 0

12: Remove column ϕ1f
i from dictionary ϕ1f

13: end if

14: end for

15: Compute final least-squares solution with updated dictionary:
α�T
j � ~x1fϕ1f†

16: end function
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Notice that λ1 � λ2 � 0 corresponds to a double-integration of the
state vector, and nonzero values for λ1 and λ2 help to accommodate
for initial condition errors. Finally, with

Φ2f
i �s�� Φi�s�

�s�λ1��s�λ2�
and U2f

k �s�� Uk�s�
�s�λ1��s�λ2�

(29)

the Laplace filtered (twice) version of Eq. (24) is

X2f�s� �
XN
i�1

αi;jΦ
2f
i �s� �

Xr
k�1

Gj;kU
2f
k �s� (30)

Here the superscript “2f ”corresponds to a signal that has been filtered
twice. Adding and subtracting λ1Xj�s� and λ2Xj�s� leads to

Fig. 1 Illustration of the iterative procedure to derive a sparse solution for a first-order system.

236 GUÉHO ETAL.

D
ow

nl
oa

de
d 

by
 P

en
n 

St
at

e 
U

ni
v 

on
 S

ep
te

m
be

r 
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
59

52
 



X2f
j �s��Xj�s�−

�λ1�λ2�Xj�s��xj�0�
�s�λ2�

�λ21Xj�s��λ1xj�0�− _xj�0�
�s�λ1��s�λ2�

�Xj�s��Yj;1�s��Yj;2�s� (31)

where

Yj;1�s� �
−�λ1 � λ2�Xj�s� − x�0�

�s� λ2�
;

Yj;2�s� �
λ21Xj�s� � λ1x�0� − _x�0�

�s� λ2��s� λ1�
(32)

The inverse Laplace transform of Eq. (32) yields the linear ODEs:

_yj;1�t� � −λ2yj;1�t� − �λ1 � λ2�xj�t�; yj;1�0� � −x�0� (33)

�yj;2�t� � −�λ1 � λ2� _yj;2�t� − λ1λ2yj;2�t� � λ21xj�t�;
yj;2�0� � 0; _yj;2�0� � λ1x�0� − _x�0� (34)

Similarly, the inverse Laplace transforms for Φ2f
i and U2f

k yield the
corresponding second-order ODEs:

�ϕ2f
i �t� � −�λ1 � λ2� _ϕ2f

i �t� − λ1λ2ϕ
2f
i �t� � ϕi�x�;

ϕ2f
i �0� � 0 _ϕ2f

i �0� � 0; i � 1; 2; : : : ; N (35)

�u2fk �t� � −�λ1 � λ2� _u2fk �t� − λ1λ2u
2f
k �t� � uk�t�;

u2fk �0� � 0; _u2fk �0� � 0 (36)

Finally, the inverse Laplace transformation of Eq. (31) results in the
following linear equation in unknown coefficient vector αj:

x2fj �t� � xj�t� � yj;1�t� � yj;2�t�

�
XN
i�1

αj;iϕ
2f
i �t� �

Xr
k�1

Gj;ku
2f
k �t� (37)

This is analogous to Eq. (17) for the first-order systems and requires
only knowledge of xj�t� anduk�t� to find unknown coefficient vector.
One can now employ the iterative l1 solution in conjunction with
two-norm minimization to find the appropriate basis functions and

their corresponding contributions from a large dictionary of basis
functions as discussed in Sec. III.A. For completeness, this procedure
is generalized to a generic dth-order system in the Appendix.

IV. Numerical Results

Themethod described in the previous section to identify governing
equations frommeasurement data is nowvalidated on three examples
of different complexity. The first example corresponds to identifica-
tion of nonlinear dynamics for the Duffing oscillator, whereas the
second example corresponds to the identification of the chaotic
Lorenz oscillator. The third example corresponds to identification
ofNewton’s lawof gravitation by considering themotion of a satellite

in an orbit around the Earth. The first two examples correspond
to chaotic dynamic systems that show some interesting dynamic
behavior, whereas the third problem corresponds to the classical
central-force field dynamic model. The first-order system formu-
lation presented in Sec. III.A is used to identify the unknown dynam-
ics for the first two examples, and the second-order formulation
presented in Sec. III.B is used for the identification of central force
field in the third example with position-only measurements. For the
central force field identification, the results are compared with a
multilayer NN as used in our prior work [40,41].

A. Duffing Oscillator

The first example aims to legitimize the new approach of this paper
with a low-pass-filter-based integral formulation by comparing it
with a pure integral formulation for parameter estimation of the
nonlinear Duffing oscillator. The Duffing oscillator represents a
nonlinear spring–mass–damper system and shows dynamic behav-
iors of interest for many real engineering applications. The governing
equations of motion for the Duffing oscillator are given as

�x� γ _x� αx� βx3 � u (38)

where γ � 0.2, α � 1, β � −1, and u is a random excitation follow-
ing a Gaussian distribution with mean 0 and standard deviation 1.
With x1 � x and x2 � _x (x1 is the analogous of a position, x2 of a
velocity), Eq. (38) can be rewritten as the first-order dynamic system:

_x1 � x2 (39a)

_x2 � −γx2 − αx1 � βx31 � u (39b)

The training dataset for the identification purpose corresponds to
response of the system for the initial condition x�0� � f 1.4; 0 gT .
The state and control input data are simulated at a frequency of
200 Hz for 10 s. Two test cases are considered: the first test case
corresponds to perfect measurements, whereas the second test case
corresponds to state measurements being corrupted with zero mean
Gaussian white noise with variance of 10−4. The initial dictionary of
basis function consists of all monomials up to 10th order in x1–x2
space, resulting in a total of 66 basis functions to approximate the
unknown system dynamics:

R10�x1; x2� �
n
1 x1 x21 x31 x41 x51 x61 x71 x81 x91 x101 x2 x1x2 x21x2 x31x2 x41x2 x51x2 x61x2 x71x2 x81x2 x91x2

x22 x1x
2
2 x21x

2
2 x31x

2
2 x41x

2
2 x51x

2
2 x61x

2
2 x71x

2
2 x81x

2
2 x32 x1x

3
2 x21x

3
2 x31x

3
2 x41x

3
2 x51x

3
2

x61x
3
2 x71x

3
2 x42 x1x

4
2 x21x

4
2 x31x

4
2 x41x

4
2 x51x

4
2 x61x

4
2 x52 x1x

5
2 x21x

5
2 x31x

5
2 x41x

5
2 x51x

5
2

x62 x1x
6
2 x21x

6
2 x31x

6
2 x41x

6
2 x72 x1x

7
2 x21x

7
2 x31x

7
2 x82 x1x

8
2 x21x

8
2 x1x

9
2 x102

o
(40)

Two values of λ are investigated in order to compare the low-pass-
filter-based integral formulation regression model (λ � 100) with a
pure integration based model (λ � 0). First, a signal analysis is
performed on the fundamental signals used in both regression mod-
els, specifically, their spectral signatures. Figure 2a compares the
spectral content of the signal that is a direct integration of the state
(λ � 0) with the filtered state (λ � 100). The signal of interest isΦ1f

12

corresponding to the filtered signal x2 at position 12 in the dictionary.
While the direct integration loses some of the spectral content as
denoted by the smooth Fourier transform,Φ1f

12 seems to qualitatively
share the spectral signature that looks very similar in shape toX2�jω�
of Fig. 2a. Similarly, the spectral content of the filtered input matches
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that of the original broad-band white noise excitation, shown in
Fig. 2b. Because the amplitude of the spectral content in the inte-
grated signals gets eroded uniformly across all frequencies because
of the smoothness of the integration operation, the pure integration
based model fails to capture the I/O relationships at higher frequen-
cies. Although this model can still be used in parameter estimation,
themagnitude and frequency content of the inputs should be adjusted
to improve the learning process. For the low-pass-filter-based integral
formulation regression model, experience of the analyst in choosing
the filter time constants enables a better control and conditioning of
the approximation problem. Therefore in many signal analysis and
adaptive control problems of online learning, the low-pass filter-
based model is preferred to a pure-integration-based model. Further-
more, the low-pass filter automatically rejects high-frequency noise
in practical applications of interest in systems and control.
The procedure listed in Sec. III.A is adopted to find the unknown

coefficient vector. While the least-squares solution is a combi-
nation of all the 66 basis functions, the sparse solution accurately
identifies the true basis functions participating in the actual dynam-
ics. Tables 1 and 2 present the values of the identified coefficients for
both the test cases considered. These identified values appear to be
very close to the true ones, which shows the efficacy of the method-
ology in identifying the true dynamics of the system. Relative error
percentages are calculated as

Relative Error% � true − identified

true
× 100 (41)

Figures 3a and 3b display the value of the resulting least-squares
and sparse coefficients for both formulations and cases. Although the
least-squares solution is the best fit possible in the sense that the
square of the error between the true signal and the identified signal is
minimized, this results in an overfitting with more basis functions
than necessary, particularly true in the presence of noise. Both the
pure integral and filtered formulations performwell when the data are
not corrupted with any noise. As seen in Fig. 3b, the integral formu-
lation starts picking up basis functions that do not appear in the
dynamics, resulting in an overfitting as well. This is because, in

addition to the spectral content of the noise perturbation, the true
spectral content of the signal has been smoothed out, making it
difficult for the algorithm to distinguish the true signal from the
noise. Figures 4a and 4c show the error resulting in the propagation
for both test cases while using the least-squares solution for the
identified dynamics. Though the least-squares solution provides
the optimal value of the coefficients while minimizing the two-norm
error of the measurement data at discrete time instants, the presence
of basis functions that are not participating in the true dynamics leads
to overfitting and hence large propagation errors. Notice that the
pure-integration-based model leads to an error in propagation of the
sameorder ofmagnitude as the low-pass-filter-based formulation.On
the other hand, the resulting sparse-identified model inherently and
automatically balances model complexity with accuracy and results
in small absolute error for both the test cases as seen in Figs. 4b and
4d. Here, the low-pass-filter-based formulation is able to preserve the
spectral content of the original signals used in the regression process
and differentiate that content from the white noise spectral signature,
leading to the right selection of the basis functions. Finally, Table 3
presents the root-mean-square (RMS) errors for 10 random initial
conditions generated from Gaussian distribution with mean x�0� �
f1.4; 0gT and covariance P0 � I2. Once again, as expected, the
sparse-approximation-based identified system leads to minimal
RMS error even in the presence of noise. This better performance
of the sparse approximation method can be attributed to its ability to
identify the inherent true dynamics of the system.
Setting λ � 0, the direct integration regression model is obtained

in our approach. The integral equation transformation is a special
case of what is implemented in this paper. The first takeaway is that
the integration operation uniformly suppresses the frequency content
in the signals involved in the approximation process, meaning that
some key spectral content at moderate frequencies will also be
smoothed out by the direct integration. This mandates the direct
integration process to have input signals (for training) with low
frequency and larger amplitudes. Of course when the right-hand side
becomes a nonlinear function of the states, this problem becomes
compounded. Another byproduct of this method is that the learning
process continues evenwhen the system is turned off (u � 0) and the
filtered integration process preserves the spectral content of the

a) Input Signal u b) State x2

Fig. 2 Duffing oscillator: spectral signatures of the state x2 and the input signal and their filtered version.

Table 1 Value of the coefficients for the sparse solution vs the true coefficients: _x1 equation

Value of λ Basis function
No. in the
dictionary True value

Sparse value
(no noise)

Sparse value
(with noise)

Rel. error %
(no noise)

Rel. error %
(with noise)

0 x1, x2 ↦ x2 12 1 0.99999964 1.000014 3.6 ⋅ 10−5 −1.4 ⋅ 10−3

100 x1, x2 ↦ x2 12 1 0.999999984 0.99999971 1.6 ⋅ 10−6 2.9 ⋅ 10−5
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a) No Noise case b) Noise case

Fig. 3 Duffing Oscillator: value of the coefficients for the basis functions.

original signals used in the regression process because a fading
memory is implemented in the filtered integration process. The data
are thus exponentially deweighted and the learning stops as soon as
excitation stops.

B. Lorenz System

The second example corresponds to the chaotic Lorenz oscillator
with governing dynamic equations given as

_x � σ�y − x� _y � x�ρ − z� − y _z � xy − βz (42)

The training data set corresponds to σ � 10, ρ � 28, β � 8∕3, and
an initial condition of x�0� � f−8; 7; 27gT . The data are recorded at a
frequency of 500 Hz for 4 s. Avalue of λ1 � 10 is chosen for the low-
pass filter. Once again two test cases (with random initial condition,
different from the ones used to generate the training data set) are
considered, with the first test case corresponding to perfect measure-
ments and the second test case corresponding tomeasurements being
corrupted by zero mean Gaussian white noise of variance 10−4. The
initial dictionary of basis functions consists of a total of 56 poly-
nomial basis functions up to degree 5 in state variables.

R5�x; y; z� �
n
1 x x2 x3 x4 x5 y xy x2y x3y x4y y2 xy2 x2y2 x3y2 y3 xy3 x2y3 y4 xy4 y5

z xz x2z x3z x4z yz xyz x2yz x3yz y2z xy2z x2y2z y3z xy3z y4z z2 xz2 x2z2

x3z2 yz2 xyz2 x2yz2 y2z2 xy2z2 y3z2 z3 xz3 x2z3 yz3 xyz3 y2z3 z4 xz4 yz4 z5
o

(43)

Once again, the procedure listed in Sec. III.A is used to find the
unknown coefficient vector. Figures 5a and 5b show the least-squares
aswell as sparse solution for coefficients for both test cases.While the
sparse solution correctly identifies the correct basis functions, the
least-squares fits nonzero amplitude for most of the basis functions.
The iterative procedure converges within three iterations to accu-
rately identify the participating basis functions and drives coefficients
of nonparticipating basis functions to zero. Tables 4–6 present the
values of the identified coefficients for both test cases. These iden-
tified values appear to be very close to the true ones, which shows the
efficacy of the developedmethodology in identifying the true dynam-
ics of the system.
Figures 6a–6d show the error resulting in the propagation for

both test cases while using the least-squares as well as sparse iden-
tification of inherent dynamics. Observe that the amplitude of the
error is correlated to the dynamics. Regions of the phase space
associated with high velocity (occurs at a lobe switching) relate with
larger errors, especially in the presence of noise (see Figs. 6c and 6d,
where there is a lobe switching at t ≃ 2 s). Finally, Table 7 presents
the RMS errors for 10 random initial conditions generated from
Gaussian distributionwithmean x�0� � f−8; 7; 27gT and covariance
P0 � 0.5I3. From these results, it is clear that the proposed sparse
approximation solution leads to an order of magnitude improvement
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in state propagation errors. It should be noted that this approach
provides 10−4–10−7% error as compared with an accuracy of 0.03%
as reported in [30,31] for the same level of noise but at a higher

sampling frequency of 1000 Hz. This better performance of the
sparse approximation method can be attributed to its ability to
identify the inherent true dynamics of the system.

C. Two-Body Keplerian Dynamics

The third example corresponds to the identification of the inverse
square law of gravitation from the observation data corresponding to
a satellite orbiting the Earth. Kepler’s laws, Newton’s laws ofmotion,
and Newton’s gravitational law were developed with critical reliance
on observational data. Based on Giuseppe Piazzi’s observations of
Ceres in 1801, Gauss calculated the orbit of Ceres from the observa-
tion data for Ceres using the theory of least-squares and initiated the

Table 3 Duffing oscillator: RMS error on 10 random initial

conditions

λ � 0 λ � 100

Solution No noise case Noise case No noise case Noise case

Least-squares 7.41 ⋅ 10−4 4.02 ⋅ 10−3 8.56 ⋅ 10−4 3.41 ⋅ 10−3

Sparse 9.77 ⋅ 10−7 3.45 ⋅ 10−5 9.02 ⋅ 10−7 1.45 ⋅ 10−6

Fig. 4 Duffing oscillator: absolute relative error.

Table 2 Value of the coefficients for the sparse solution vs the true coefficients: _x2 equation

Value of λ Basis function No in the dictionary True value
Sparse value
(no noise)

Sparse value
(with noise)

Rel. error %
(no noise)

Rel. error %
(with noise)

0 x1, x2 ↦ x1 2 −1 −1.00000003 −1.000011 −3.0 ⋅ 10−6 −1.1 ⋅ 10−3

0 x1, x2 ↦ x31 4 −1 −0.99999996 −0.999988 4.0 ⋅ 10−6 1.2 ⋅ 10−3

0 x1, x2 ↦ x2 12 −0.2 −0.20000003 −0.2000060 −1.5 ⋅ 10−5 −3.0 ⋅ 10−3

100 x1, x2 ↦ x1 2 −1 −1.0000004 −1.0000016 −4.0 ⋅ 10−5 −1.6 ⋅ 10−4

100 x1, x2 ↦ x31 4 −1 −0.9999995 −0.9999974 5.0 ⋅ 10−5 2.6 ⋅ 10−4

100 x1, x2 ↦ x2 12 −0.2 −0.200000008 −0.1999995 4.0 ⋅ 10−6 2.5 ⋅ 10−4
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Fig. 5 Lorenz problem: value of the coefficients for the basis functions.

Table 4 Value of the coefficients for the sparse solution vs the true coefficients: x direction

Basis function No. in the dictionary True value
Sparse solution

(no noise)
Sparse solution
(with noise)

Relative error %
(no noise)

Relative error %
(with noise)

x, y, z ↦ x 2 −10 −10.00000000035 −9.9999949 −3.54 ⋅ 10−9 5.10 ⋅ 10−7

x, y, z ↦ y 7 10 10.00000000030 10.0000333 −3.02 ⋅ 10−9 −3.33 ⋅ 10−6

Table 5 Value of the coefficients for the sparse solution vs the true coefficients: y direction

Basis function No. in the dictionary True value
Sparse solution

(no noise)
Sparse solution
(with noise)

Relative error %
(no noise)

Relative error %
(with noise)

x, y, z ↦ x 2 28 28.000000038 28.0008596 −1.34 ⋅ 10−7 −3.07 ⋅ 10−5

x, y, z ↦ y 7 −1 1.0000000053 −1.0002722 −5.33 ⋅ 10−7 −2.72 ⋅ 10−4

x, y, z ↦ xz 23 −1 −1.0000000012 −1.0000214 −1.19 ⋅ 10−7 −2.14 ⋅ 10−5
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Table 6 Value of the coefficients for the sparse solution vs the true coefficients: z direction

Basis function No. in the dictionary True value
Sparse solution

(no noise)
Sparse solution
(with noise)

Relative error %
(no noise)

Relative error %
(with noise)

x, y, z ↦ xy 8 1 1.00000000058 0.9999914 −5.81 ⋅ 10−8 8.60 ⋅ 10−6

x, y, z ↦ z 22 −8∕3 2.66666666776 −2.6666329 −4.11 ⋅ 10−8 1.27 ⋅ 10−5

Fig. 6 Lorenz problem: absolute relative error.

premises of data driven models. In this section, the classical problem
of identifying the central force field from position-only observation
data is considered to validate the developed approach. In addition,
the results from the methods developed in this paper are compared
with the same analysis performed with a multilayered NN-based
approach. Previous work conducted in this respect [40,41] will allow
us to precisely compare the machine-learning-based approach with
the sparse approximation method.

1. Two-Body Problem in Cartesian Coordinates

Let r1 and r2 be the position vector of two bodies, andm1 and m2

be their respective mass. If r � r2 − r1 is the relative position vector

between the two bodies, the dynamics of the two-body problem are
given by

�r � −
μ

r3
r (44)

with μ � G�m1 �m2� and G is the universal gravitational constant.
In an inertial reference frame and using Cartesian coordinates,

with r � f x; y; z gT and r �
���������������������������
x2 � y2 � z2

p
, Eq. (44) can be

written as

f :r ↦ �r ⇔ f :

2
664
x

y

z

3
775 ↦

2
664

�x

�y

�z

3
775 � −

μ

r3

2
664
x

y

z

3
775 (45)

The idea is to identify the governing equations of the function f
introduced in Eq. (45) without any a priori knowledge about its
structure and therefore to determinate if the resulting identifiedmodel
has the ability to identify the underlying dynamics embedded in some
data set.

2. Training Set and Dictionary of Basis Functions

Four different types of orbits are selected to build the training set: a
low Earth orbit (LEO), a Molniya orbit, a polar orbit, and a geo-
synchronous orbit. Table 8 summarizes their orbital elements. The
training data set corresponds to a fraction of a revolution on these
orbits: range data are recorded every 1 s for 1.2 h for the International
Space Station (ISS), and 2 h for the remaining three. Canonical units
are used in this example: the length unit (LU) is chosen to be the
radius of the Earth; the time unit (TU) is chosen such that the
gravitational parameter μ � 1.
To construct the initial dictionary, the set R3�r� consisting of 20

“monomials” up to order 3 in x, y, and z is defined:

R3�r� � f 1 x x2 x3 y xy x2y y2 xy2 y3 z xz x2z yz xyz y2z z2 xz2 yz2 z3 g (46)

Table 7 Lorenz problem: RMS error on

10 random initial conditions

Solution No noise case Noise case

Least-squares 9.369 ⋅ 10−6 1.418

Sparse 1.704 ⋅ 10−7 3.117 ⋅ 10−3

Table 8 Orbital elements for the four considered orbits of the

training data set

Orbital elements ISS Molniya Polar GEO

Semimajor axis a, m 6,789,500 26,600,000 9,240,000 42,164,000
Eccentricity e 0.0001912 0.74 0.00025 0
Inclination i, deg 51.6414 63.4 89.8 0.01
RAAN Ω, deg 259.0449 128 120 120
Argument of perigee
ω, deg

182.9557 270 360 360

True anomaly ν, deg 0 0 0 0

RAAN = Right Ascension of the Ascending Node.
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Furthermore, sets R3;1�r; r�, R3;2�r; r�, and R3;3�r; r� are defined to
consist of the aforementionedmonomials divided by r, r2, and r3, i.e.,

R3;1�r; r� � R3�r�∕r; R3;2�r; r� � R3�r�∕r2;
R3;3�r; r� � R3�r�∕r3 (47)

This class of basis functions is motivated by the general 1∕rn forms
that are often seen in force interactions, especially for conservative
force fields including gravity. The final dictionary consists of a total
of 80 basis functions constructed as the union of R3�r�, R3;1�r; r�,
R3;2�r; r�, and R3;3�r; r�, i.e.,

D � R3�r� ∪ R3;1�r; r� ∪ R3;2�r; r� ∪ R3;3�r; r� (48)

The second-order formulation described in Sec. III.B is used to
identify the inherent true central force field dynamics, with coeffi-
cients of the low-pass filters chosen to be λ1 � λ2 � 10. Figure 7
presents the coefficients found using the least-squares solution and
the coefficients from the sparse approximation method. Once again
the least-squares method fails to clearly identify the true participating
basis functions. Instead, a nonminimal combination of basis func-
tions in the dictionary is selected tominimize the mean squared error.
On the contrary, the sparse approximation approach clearly identifies
the one basis function corresponding to inverse square law as
reported in Table 9. These converged coefficients agree with the true
value of μ with almost machine precision. Figure 8 shows the error
resulting in the propagation on the training orbits using dynamics
identified by the least-squares and sparse methods. The error in the
propagation is around 10−4 LU depending on the type of orbit for the
least-squares method, whereas an average absolute error for sparse
approximation is on the order of 10−13 LU. The final error resulting
from the least-squares solution is not satisfactory due to the excitation
of basis functions that are not participating in the true dynamics.

3. Comparison with the Deep Learning Approach

To show the relative performance of the sparse learning method-
ology presented in this paper, a multilayer NN learning-based
approach is also considered. An NN can be seen as a complex
nonlinear mapping between some given input and output data. Math-
ematically speaking, ifE andF are two topological spaces, anNN is a
mappingM:E → F such that

M:x ↦ y � M�x� (49)

where x is the input and y the output of the NN. The mappingM is
generally nonlinear and a function of a set of parameters α:

M � αM (50)

Along with the specific structure of the mapping M, the set of
parameters α defines an NN uniquely. The notation α is not chosen
randomly: this set of parameters is analogous to the matrix of
coefficients α defined Eq. (5). These unknown parameters are found
by minimizing the loss function

L�Mα;S� �
XN
k�1

MSE�k�;

MSE�k� � 1

m

Xm
i�1

�yk�i� − ~yk�i��2 �
1

m
kyk − ~ykk22 (51)

where ~yk ∈ Rm represents the output of the network, i.e.,
~yk � Mα�xk�, and the yk ∈ Rm represent the true measurements
for the output vector. Figure 9 shows that how the solution from the
NNand the true solution are generated to compute the loss function to
find the unknown network parameters α. Unfortunately, the resulting
optimization is nonlinear in naturewithmultiple local minima. In our
prior work [40,41], an extensive study is conducted to understand the

learning capabilities of NNs to identify the Keplerian dynamics. The
goal is to examinewhether the specific structure of NNs can learn the
inherent dynamics of the two-body problem and examinewhether an
NN-trained model can reproduce the well-known characteristics of
Keplerian dynamics such as conservation of energy and angular
momentum. Several test cases are considered to assess the learning
capability of the converged NN. Three different network architec-
tures (feed-forward, residual, and deep residual) are considered in
addition to studying the impact of the size of training data size on the
network approximation. Table 10 summarizes the best results on

Fig. 7 Two-body problem: value of the coefficients for the basis

functions.

Table 9 Value of the coefficients for the sparse solution vs the

true coefficients

Basis function No. in the dictionary True value Relative error %

r ↦ x∕r3 25 −1 2.45 ⋅ 10−11

r ↦ y∕r3 34 −1 −7.21 ⋅ 10−12

r ↦ z∕r3 52 −1 −1.93 ⋅ 10−11
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approximating the Keplerian motion using different architectures of
NN along with the results obtained with the least-squares and sparse
approximation in this work. It should be mentioned that the training

data set for the NN is much larger than the training data set for the
least-squares and sparse approximation. The training data set for
the NN approximation consists of 20 random orbits with multiple

Fig. 8 Two-body problem: absolute relative error for radial component.

Fig. 9 The computation of loss function forNNapproximation: the upper part illustrates how theNN is used to approximate the dynamics alongwith the

Runge–Kutta fixed-size step algorithm; the bottom part is the classical generation of the true solution with the known dynamics and a Dormand–Prince

integration algorithm.
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revolutions. It has been shown that the three structures are able to
provide accurate results for orbit prediction considering a large data
set. Although it seems that the NN-learned model can be trained to
approximate the Keplerian dynamics to good accuracy, the complex-
ity of the learned model is an issue. The resulting NN model is a
profligate model for the Keplerian dynamics as compared with New-
ton’s law of gravitation. While the DeepResNet structure considered
provides the most accurate results, the ResNet architecture shows
very similar performance with fewer parameters. However, none of
these architectures is able to identify the parsimonious structure of the
governing dynamics as identified by the sparse approximation algo-
rithm. This is because methods like NN improve the approximation
accuracy by increasing the complexity of the model (defined by the
parameters of themodel) while fixing the basic building blocks or the
basis function, whereas the developed methodology along with other
variants such as [36] improves the approximation capability by
judiciously selecting the basis functions.

V. Conclusions

This work presents a convex-optimization-based approach for
nonlinear system identification from state and control input time
histories. The proposed methodology expands the unknown non-
linearities in system dynamics in terms of basis functions consisting
of monomials of various orders. An integral form of the underlying
nonlinear ordinary differential equations is considered to solve for the
unknown coefficients for the basis functions. While conventional
methods for nonlinear system identification rely on improving the
approximation accuracy by increasing the number of basis functions
and hence the parameters of the model, the developed approach
exploits recent advances in sparse approximation to automatically
select the appropriate structure for the inherent nonlinearities. Hence,
the developedmethodology chooses building blocks for accurate and
efficient construction of the I/O map. Though the main ideas are
developed for a first-order system to identify the I/O map from the
time histories for full state (i.e., position and velocity) as well as
control input vector, an extension is developed for the identification
of second-order systems where nonlinearities are a function of only
position-level state variables from time histories of only position-
level state variables and control input. Three numerical examples are
presented to provide evidence in support of the efficacy of the
proposed approach. The unique agreement in correctly identifying
the true dynamics for all the three problems provides a strong basis
for optimism in demonstrating the utility of the approach for identi-
fying the inherent physics-based map from given data. Future work
will concentrate on developing methods to combine sparse approxi-
mation algorithms with linear system identification procedures to
automatically select the dimension of the hidden state-space model.

Appendix: Approach for a General dth-order system

This section aims to extend even further themathematical develop-
ment and show how to identify the dynamics of a general dth-order
physical system where only position measurements are accessible
and the governing dynamics rely only upon position knowledge. For
d ∈ N, this system is represented as a general dth-order nonlinear
dynamic system:

x�d��t� � f�x�t�� �Gu�t� (A1)

where x�t� ∈ Rn represents the state of the system and u�t� ∈ Rn is
the control action at time t and G ∈ Rn×r is the constant-time input
influence matrix. The nonlinear function f :Rn → Rn represents the
dynamics constraints that define the equations of motion of the
system and is unknown. Some important results useful for further
developments will be presented first. In the following, λ1; λ2; · · · are
real positive numbers.

A. Mathematical Development

For �i; j� ∈ N2, let us define the function ϕ such that ϕ�i; j� � 1 if
i � 0 or j � 0 and

ϕ�i; j� � �−1�j
Xi

k�1

X
�l1;l2;: : : ;lk�∈1;i

nl1�nl2� · · ·�nlk�j

l1<l2< · · · <lk

λ
nl1
l1
λ
nl2
l2

: : : λ
nlk
lk

otherwise

(A2)

For �i; j� ∈ N2, it can be shown that the number of terms in the series
ϕ�i; j� is 1 if i or j is 0 and

Xj

k�1

�
i
k

��
j − 1

k − 1

�
otherwise (A3)

Similarly, one has the following relationship for �i; j� ∈ N2:

ϕ�i; j� − λi�1ϕ�i� 1; j − 1� � ϕ�i� 1; j� (A4)

For any d ∈ N� and x ∈ R, it is possible to write

xd � a0
Yd
m�1

�x� λm� � a1
Yd−1
m�1

�x� λm�� · · · �ad−1�x� λ1� � ad

�
Xd−1
i�0

�
ai

Yd−i
m�1

�s� λm�
�
� ad (A5)

The coefficients are

ai � ϕ�d − i� 1; i� (A6)

This last assumption is a central result and can be proved by
induction.
Before proceeding, consider a set of basis functions fϕigi�1 : : :∞;

ϕi:R
n → R, so that one can approximate f as a linear combination of

finite number of N basis functions:

f�x� ≈
XN
i�1

αiϕi�x� � αTϕ�x� (A7)

where α��α1 α2 · · · αN �T ∈RN×n and ϕ�x�� �ϕ1�x� ϕ2�x� · · ·
ϕN�x��T ∈RN×1. Hence Eq. (A1) can be rewritten as

x�d��t� �
XN
i�1

αiϕi�x� �Gu�t� (A8)

From now on, consider a one-dimensional system; that is, n � 1 and
x � x is a scalar variable. If n > 1, it is sufficient to work along
the dimension of x and repeat the steps along each dimension. The
Laplace transform of the left-hand side of Eq. (A8) is

Lfx�d��t�g � sdX�s� −
Xd
k�1

sd−kx�k−1��0� (A9)

For λi ∈ R��, let us consider the Laplace filtering operator

Table 10 Comparison of different methods to approximate the

Keplerian dynamics

Method

Feed-
forward
NN

Residual
NN

Deep
residualNN

Least-
squares Sparse

Average
error [LU] 7 ⋅ 10−8 4 ⋅ 10−8 3 ⋅ 10−8 2 ⋅ 10−4 4 ⋅ 10−13

No. of
parameters

2070 480 7720 80 3
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I λi : R → R;

• ↦
•

s� λi
(A10)

Applying successively I λ1, I λ2 ; : : : ; I λd to Eq. (A9) gives

Xdf�s� � I λd ∘ I λd−1 ∘ · · · ∘ I λ1 �Lfx�d��t�g�

� sdX�s� −P
d
k�1 s

d−kx�k−1��0�Q
d
m�1�s� λm�

� Xdf
1 �s� − Xdf

2 �s� (A11)

where

Xdf
1 �s�� sdX�s�Q

d
m�1�s�λm�

and Xdf
2 �s��

P
d
k�1s

d−kx�k−1��0�Q
d
m�1�s�λm�

(A12)

Using previous developments, it is possible to write Xdf
1 �s� as

Xdf
1 �s�� sdX�s�Q

d
m�1�s�λm�

�X�s��
Xd
i�1

ϕ�d−i�1;i�Q
i−1
m�0�s�λd−m�

X�s� (A13)

Similarly, the second term Xdf
2 �s� is

Xdf
2 �s� �

P
d
k�1 s

d−kx�k−1��0�Q
d
m�1�s� λm�

�
P

d−1
k�1�

P
d−k−1
i�0 ϕ�d − k − i� 1; i�Qd−k−i

m�1 �s� λm� � ϕ�1; d − k��x�k−1��0�Q
d
m�1�s� λm�

� x�d−1��0�Q
d
m�1�s� λm�

�
Xd−1
k�1

Xd−1
j�k

ϕ�d − j� 1; j − k�Qj−1
m�0�s� λd−m�

x�k−1��0� �
Xd
k�1

ϕ�1; d − k�Q
d−1
m�0�s� λd−m�

x�k−1��0�

�
Xd
j�1

Xj
k�1

ϕ�d − j� 1; j − k�Qj−1
m�0�s� λd−m�

x�k−1��0� (A14)

Finally, the compact expression for Xdf is

Xdf�s��X�s�

�
Xd
j�1

ϕ�d−j�1;j�X�s�−Pj
k�1ϕ�d−j�1;j−k�x�k−1��0�Qj−1

m�0�s�λd−m�
(A15)

This expression of Xdf is easily expressed in the time domain.
Performing the same operations on the right-hand side of Eq. (A7)
leads to

Φdf
i �s� � I λd ∘ I λd−1 ∘ · · · ∘ I λ1 �Lfϕi�x�g� �

Φi�s�Q
d
m�1�s� λm�

;

i � 1; 2; : : : ; N (A16)

and

Udf�s� � I λd ∘ I λd−1 ∘ · · · ∘ I λ1 �Lfu�t�g� �
U�s�Q

d
m�1�s� λm�

(A17)

where Lfϕi�x�t��g � Φi�s� and Lfu�t�g � U�s�. Finally, the
Laplace filtered version of Eq. (A7) is

Xdf�s� �
XN
i�1

αiΦ
df
i �s� �GUdf�s� (A18)

with Xdf, Φdf
i , and Udf defined in Eqs. (A14–A16). Going back in

the time domain, one can write the corresponding differential equa-
tions forΦdf andUdf immediately. ForΦdf

i , first rewrite Eq. (A15) as

Φdf
i �s� � Φi�s�Q

d
m�1�s� λm�

⇔ Φdf
i �s�

Yd
m�1

�s� λm� � Φi�s�

⇔ sdΦdf
i �s� � −

Xd−1
k�0

aks
kΦdf

i �s� �Φi�s�
(A19)

Considering zero initial conditions, ϕdf�k�
i �0� � 0 for k � 0;

1; : : : ; d, one obtains the differential equation:

ϕdf�d�
i �t��−

Xd−1
k�0

akϕ
f�k�
i �t��ϕi�x�; i�1;2;:::;N (A20)

The same procedure for the input signal leads to the differential
equation

udf�d��t� � −
Xd−1
k�0

aku
df�k��t� � u�t� (A21)

with similar zero initial conditions. Notice that Eqs. (A14), (A19),
and (A20) lead to Eqs. (11), (14), and (15) for d � 1 and Eqs. (31),
(35), and (36) for d � 2.
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