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A COMPUTATIONALLY EFFICIENT APPROACH TO
REACHABILITY ANALYSIS OF MULTIBODY SYSTEMS

Nate S. Osikowicz∗ and Puneet Singla†

We present a computationally efficient method for generating multibody reacha-
bility sets based on statistical moment propagation. In general, a multibody system
could be constructed by appending M individual modules, each with N reachable
states, to yield a structure withNM possible end-effector positions. For multibody
systems with many links, this exponential growth is computationally intractable.
However, the problem can be solved by representing the workspace as a proba-
bility density function. In this approach, we characterize the workspace density
by its statistical moments. Then, a numerical quadrature scheme is leveraged to
evaluate the expectation integrals with a minimum number of sample points. A
forward kinematics model is developed to update the mean and covariance of the
workspace as the number of modules is increased. This yields a Gaussian ap-
proximation of the workspace density. For an n-link manipulator, this reduces the
problem into solving n one-dimensional quadrature schemes, avoiding the com-
putational bottleneck that is inherent to random sampling. To showcase the new
approach, we share several examples including an n-link serial manipulator and a
novel tensegrity robotic arm.

INTRODUCTION

Growing interest in In-Space Assembly (ISA) has ushered in a need for large adaptable multi-
body systems. By establishing a modularized satellite architecture, antennas and solar arrays could
be realized without the size constraints that are inherent to the limited payload of launch vehicles.1

Recent studies have shown that ISA is likely the only solution for filled-aperture observatories with
a larger aperture than 15 meters.2–4 However, modularized design remains a major technical differ-
ence between traditional satellite architecture and ISA. One of the main challenges of modularized
design is realizing the entire range of reachable configurations for the end-to-end system as it is
adapted and expanded in space. This problem of searching an entire design space is known as
reachability analysis or workspace generation.

Reachability analysis has been studied extensively in robotic manipulation,5–8 optimal control,9–12

protein synthesis,13, 14 and other applications. However, a growing problem is the need to sample
higher and higher dimensional spaces with inherently limited computational resources. This is due
to the exponential growth of samples required to capture the workspace as the number of modules
is increased. For example, if a system contains M modules with N configurations each, then the
number of samples required to generate the workspace is NM . This brute force approach of Monte
Carlo sampling can be used effectively for systems with any joint and actuator configuration.15

However, it is not feasible for large multibody systems, as it would require more computing power
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than is currently available. Another issue that is uniquely inherent to in-space assembly is the need
to re-evaluate the workspace as the system is adapted in space. On-the-fly workspace generation
would only be enabled by a computationally efficient approach. Efficient workspace generation is
necessary because it would allow for more informed design and optimal control of modular systems.

In the past, other methods have been pursued for generating a robot’s workspace in a computa-
tionally efficient manner. One approach presented by Chrikjian and Ebert-Uphoff introduces the
concept of workspace density.16 In their approach, the set of joint rotations and translations is
parameterized by a single homogenous transform and the topological space is broken down into
discrete volume elements. Then, the workspace density is defined as the number of configurations
that appear in each volume element divided by the total volume of the element. This allows the
end-effector workspace to be generated by convolving workspace densities of individual modules.
For an n-link manipulator, the convolution-based approach solves the problem in (n − 1) convo-
lution integrals, which reduces the computational complexity of the problem significantly. More
recently, the Fast Fourier Transform (FFT) has been used to streamline the convolution integrals for
computation of 3D workspaces.17

In this paper, we further reduce the computational complexity of the problem by leveraging the
notion of statistical moments. Using workspace densities, we can approach the problem through
the lens of stochastic reachability analysis. The concept of moment propagation has been explored
previously for the application of stochastic optimal control.9, 18 However, applying the method to
multibody workspace generation is an open area of research. In this approach, we characterize the
workspace density of each joint angle by its first two statistical moments: the mean and covariance.
Then, a kinematics model is developed to iteratively solve for the mean and covariance of the end-
effector. The result is a Gaussian approximation of the workspace. One of the main benefits of
the approach is that it enables us to approximate the workspace of any serially-arranged multibody
structure. The internal structure of each module can be either serial or parallel, so long as the system
is arranged in a serial manner. This allows us to analyze inherently complex structures such as the
tensegrity manipulator19, 20 depicted in Figure 1.

Figure 1. An example of a serially arranged manipulator with parallel internal structure

The paper is organized as follows. In the next section, we explain the problem in detail, focusing
conceptually on the exponential growth of samples and we explain how to curtail the issue with
moment propagation. Then, in the Methodology section, we discuss the forward kinematics and
numerical quadrature scheme that are used for Gaussian approximation of the workspace. In the
Numerical Results section, we show how the method can be used to approximate the workspace of
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several systems including an n-link manipulator and a novel tensegrity robot.

PROBLEM STATEMENT

Figure 2. Exponential growth of samples

The reachability set, or workspace, of a multibody system can be defined as the set of reachable
configurations of the end-effector.21 The field of reachability analysis concerned with robotic sys-
tems seeks to answer the question, “For all possible joint values within the specified joint limits,
what is the manifold of reachable end-effector configurations?”. This paper focuses specifically
on multibody systems which exhibit serial topology. That is, the end-to-end system forms an or-
dered chain wherein the child of one link is the parent of the next.22 It is important to note that the
individual modules may have either serial or parallel internal structure.

A serial manipulator could be systematically constructed by appending M individual modules,
each with N reachable states, to yield a structure with NM possible end-effector positions. As
depicted in Figure 2, the number of samples required to accurately capture the workspace grows
exponentially with the number of modules. Given this exponential growth in the number of possi-
ble end-effector positions, a standard sampling-based approach is not computationally feasible for
calculating the multibody reachability set. In fact, after reaching a certain number of links, random
sampling becomes computationally intractable.

3



Computation using Statistical Moments

To avoid the computational burden associated with random sampling, we take a stochastic ap-
proach in which the reachability set is represented by a probability density function. In this ap-
proach, we use the workspace density function,16 which describes the distribution of end-effector
configurations in the workspace. This is done by dividing the space into equally sized voxels
and counting the number of configurations that lie within a voxel. Equipped with the notion of
workspace density, we can apply a Gaussian quadrature scheme to characterize the workspace
density by its statistical moments. Gaussian quadrature is an attractive approach due to the low
number of points required to evaluate the expectation integrals which define the moments. Finally,
the end-effector workspace is generated by propagating these statistical moments through forward
kinematics. The process is summarized below.

1. Divide the system into n serially arranged links in which the top of one link is attached to the
base of the next link. Each link may have serial or parallel internal structure, so long as the
system can be globally arranged in a serial manner. Number the links so that the 1st link is
attached to the base and the nth link is attached to the end-effector.

2. Arrange the kinematic chain so that the ith link can be represented in the reference frame
attached to the (i-1)th link. Define the rotation matrix C(θi) which maps the ith reference
frame to the (i-1)th reference frame.

3. Working distally from the end-effector to the base, generate the forward kinematics model
which maps n joint angles to the end-effector position in global coordinates.

4. Define the mean µi and covariance Σi of the ith link. Compute the mean and covariance of
the nth link by evaluating the associated expectation integrals via Gaussian quadrature.

5. Using the kinematics model, propagate the mean and covariance of the distribution by work-
ing distally from the end-effector to the base.

6. After n propagations, construct the end-effector workspace by using the mean and covariance
computed in the previous step
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METHODOLOGY

(a) Monte-Carlo sampling (b) Statistical moment propagation

Figure 3. Competing methods for reachability analysis of a general multilink system

Forward Kinematics in R2

Generally speaking, the end-effector position of a robotic manipulator can be defined by its joint
lengths and joint angles.23 In the planar rigid case, such as in Figure 3, this leaves behind n joint
angles to fully define the pose of an n-link robotic system.

Figure 3 illustrates the first two links of an n-link serial manipulator. The ith link can be de-
scribed by its length `i and angle θi with respect to the previous link, as depicted. By attaching a
reference frame to each of the links, one can easily compute the end-effector position through for-
ward kinematics. We define the vector along the ith link expressed in the ith frame as ~r ii = [0, `i]

T .
Similarly, the ith link vector can be expressed in the global coordinates as ~r Ni = [xi, yi]

T . To
convert between local (link-centric) and global coordinate frames, we make use of Direction Cosine
Matrices (DCMs)24 and work distally from the end-effector to the base of the manipulator. Using
this methodology, the ith link can be converted from its local coordinate frame to the previous link’s
frame by using the DCM C(θi) as

~r i−1i =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
︸ ︷︷ ︸

C(θi)

[
0
`i

]
︸︷︷︸
~r i
i

. (1)

To illustrate, the endpoint of the first link in Figure 3 is expressed in global coordinates as
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~r N1 =

[
x1
y1

]
=

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
︸ ︷︷ ︸

C(θ1)

[
0
`1

]
︸︷︷︸
~r 1
1

. (2)

Similarly, the second link can be expressed with respect to the first link as

~r 1
2 =

[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]
︸ ︷︷ ︸

C(θ2)

[
0
`2

]
︸︷︷︸
~r 2
2

. (3)

Now, combining Eqs. 2 and 3, we can compute the end-effector position of the 2-link manipulator
as

~r N2 = C(θ1)
[
~r 1
1 + C(θ2)~r

2
2

]
. (4)

Using the above methodology, we can compute the forward kinematics for an n-link serial ma-
nipulator as

~r Nn =
n∑
i=1

( i∏
j=1

C(θj)
)
~r ii . (5)

Workspace Generation in R2

Traditionally, workspace generation has been achieved by randomly sampling the set of joint
angles and propagating them through the forward kinematics model. However, such methods are
computationally burdensome and infeasible for systems with many links. Instead, we can leverage
the probability density function (PDF) to capture the shape of each module’s workspace as depicted
in Figure 3(b). Then, statistical moments are computed and propagated through the forward kine-
matics model in Eq. 5 to generate the end-effector’s workspace.

In general, an nth order probability density function can be uniquely characterized by n statistical
moments. The nth central moment of the probability density function p(x) is defined as

E[xn] =

∫ ∞
−∞

xnp(x) dx. (6)

In this work, only the first two moments are considered. The mean and the variance. The mean,
or first central moment, is defined as

E[x] =

∫ ∞
−∞

xp(x) dx. (7)

while the variance, or second central moment, is defined as

E[x2] =

∫ ∞
−∞

x2p(x) dx. (8)
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Generally, for higher-order distributions, more accurate results can be obtained by computing
higher-order moments. The 3rd-order moment captures the skewness of the distribution while the
4th-order moment captures tailedness, or kurtosis. In this paper, only the first two moments are
computed, resulting in a Gaussian approximation of the workspace.

As mentioned, traditional Monte Carlo (MC) methods can be used to evaluate the expectation
integrals above, but they suffer from slow convergence rates. A more desirable approach is to use
a quadrature scheme such as Gaussian Quadrature, which only requires N quadrature points to
reproduce the expectation integrals with degree ≤ 2N − 1. That is, to evaluate the expectation
integral of a polynomial f(x), one may solve for the weights wi at deterministic sample points xi
to reproduce the expectation integral as

E[f(x)] =
N∑
i=1

wif(xi). (9)

Depending on the shape of the distribution, different polynomials are available for approximating
the function being evaluated. Legendre polynomials are recommended for uniform PDFs while
Hermite polynomials are recommended for Gaussian PDFs. In this work, joint angles are sampled
from uniform distributions and thus, Gauss-Legendre Quadrature is used for workspace generation.

Our objective is to approximate the distribution of each link with a Gaussian PDF and estimate
the end-effector’s workspace by propagating the first two statistical moments through forward kine-
matics. Recall, Eq. 5 is a forward mapping between the joint angle space θi and the end-effector
position ~r Nn . Using an iterative process, we can approximate the distribution of each link ~ri with
Gauss-Legendre Quadrature and then update the mean and covariance by working distally from the
end link to the base. For an n-link manipulator, this requires n steps. In the first step, the mean and
covariance of the nth (distal) link are computed as follows. The mean of the nth link is evaluated
with respect to its parent frame as

~µn = E[~r n−1n ] = E[C(θn)]~r nn . (10)

To compute the above expectation integral, one can evaluate the expected value of each matrix
element and carry out the matrix multiplication as

~µn = E[~r n−1n ] =

[
E[cos(θn)] −E[sin(θn)]
E[sin(θn)] E[cos(θn)]

] [
0
`n

]
. (11)

Then, the covariance matrix of the nth link is evaluated similarly as

Σn = E[~r n−1n ~r n−1
T

n ] − ~µn~µ
T
n

= E[C(θn)]~r nn ~r
nT

n E[C(θn)T ] − ~µn~µ
T
n .

(12)

In subsequent steps, the mean and covariance are updated by working distally from the end-
effector to the base. The mean and covariance of the ith link are computed by using knowledge of
the previously computed moments as
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~µi = E[C(θi)](~r
i
i + ~µi−1)

Σi = E[C(θi)](~r
i
i ~r

iT

i + ~r ii ~µ
T
i−1 + ~µi−1~r

iT

i + Σi−1)E[C(θi)
T ].

(13)

Repeating this process for n links, we can achieve a Gaussian approximation to any serial ma-
nipulator’s workspace. As mentioned, higher-order moments could be computed and propagated to
gain a better approximation of the workspace. However, higher order approximations would come
at a computational cost due to evaluating the expectation integrals.

Workspace Generation in R3

The method outlined above can be further extended for manipulators in R3. The main adaptation
is that the joint angle space must be parameterized to capture rotations in R3. Any of the commonly
used angle parameterizations such as Euler angles, quaternions or Rodriguez Parameters can be
used to parameterize rotations in R3. In this paper, we choose to use the (3-2-1) Euler Angle set to
simplify the kinematic equations. Joint angle rotations are parameterized by the Direction Cosine
Matrix,

C(θ, φ, ψ) = C(ψ)C(φ)C(θ)

=

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)


=

 c(θ)c(ψ) c(θ)s(ψ) −s(θ)
s(φ)s(θ)c(ψ) − c(φ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) s(φ)c(θ)
c(φ)s(θ)c(ψ) + s(φ)s(ψ) s(φ)s(θ)s(ψ) − s(φ)c(ψ) c(φ)c(θ)

 .
(14)

To generate a workspace involving 3D joint rotations, one may follow the same procedure as in
the planar case, however substituting the above DCM into Eq. 13 for evaluating the moments.
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NUMERICAL RESULTS

Example: Workspace Generation for a 3-link Serial Manipulator

Figure 4. Nine different workspace regimes for the 3-link manipulator

Using the methodology laid out in the previous section, we evaluate the workspace of a serial
manipulator with 3 links. The system of interest is depicted in Figure 5 with joint lengths ` = 1
and joint angles of 30 degrees. Nine different simulations were carried out and plotted in Figure 4.
In each of the simulations, the joint angles were bounded uniformly between the specified values.
First, random samples were taken from the joint angle space and propagated through the kinematics
model to yield each of the end-effector positions depicted in dark blue. A total of 10 Monte Carlo
samples were taken for each joint angle. For the 3-link manipulator, this yields a total of 103 = 1000
samples of the end effector position. Due to this exponential growth, random sampling quickly
becomes infeasible for manipulators with many links.

Next, the mean and covariance were computed for the end link and updated by working distally
from the end link to the base using Eqs. 11-13. This iterative process yields the mean and covariance
of the end-effector which were used to generate the confidence ellipses shown in Figure 4. As
described in the previous section, we use Gauss-Legendre polynomials to evaluate the first two
expected values of the joint angle space. The new approach allows us to compute the end-effector
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position by evaluating 3 one-dimensional angle spaces as opposed to sampling an entire three-
dimensional angle space, which is computationally expensive.

Figure 4 shows the results of the nine different simulations. In each subfigure, the mean position
of the end-effector is represented by the red circle. The 90% confidence ellipse is shown in purple
while the 95% and 99% ellipses are shown in blue and cyan, respectively. In each case, it can be
seen how the mean position is near the centroid of the random samples. Moreover, the Gaussian
approximation nicely captures the shape of each distribution to second order. For example, in cases
where one or two of the links is restricted to a small angle space, such as in the bottom row, the
ellipses have higher eccentricity to account for the narrow distribution. It is important to note that
skewness and kurtosis are not reflected without also computing the third and fourth expected values.
These higher order moments would more accurately capture the shape of non-elliptical distributions
such as the one depicted at the top right of the figure. Nonetheless, the 2nd-order approach depicted
here provides a close enough approximation for many useful applications such as design and path
planning.

Figure 5. Reachability envelope for the 3-link manipulator

Example: Workspace Generation for a Planar Tensegrity Robot

In the previous example, it was shown how our approach can be used to capture the workspace
density of a general serial manipulator. Efficient workspace calculations can be very useful for
the design and path planning of inherently complex structures. One such example is the tensegrity
structure depicted in Figure 6. Tensegrity design has been historically limited due to difficulty in
visualizing the entire range of reachable shapes for the end-effector. It is much easier to visualize
each individual module and then propagate the workspace forward to the end-effector. Using our
approach, we can quickly generate the end-effector workspace by propagating the first two statistical
moments through the modular structure.

In this example, we investigate the workspace of a T-bar tensegrity robotic arm. The structure is
composed of three bar members depicted in black and six string members depicted in red. As can
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be seen in the figure, each bar angle is modulated by changing the lengths of the strings attached to
its bar ends. The T-bar is constructed from two vertical members with length `1 = `2 = 1 and one
horizontal member with length `3 = 2. Random samples are generated by uniformly bounding the
lower and middle joints between -45 and 45 degrees. In this preliminary study, we fix the angle of
the horizontal bar so that it always makes a right angle with the lower vertical bar. In later studies,
the kinematics model will be updated to permit rotation of the middle bar.

Figure 6. Workspace Generation via Gaussian mixing for the T-bar tensegrity robot

The shape of the workspace is estimated by mixing four Gaussian distributions generated from
the bounds shown in Figure 7. The bounds were chosen between -45 and 45 degrees to prevent
bar/string collisions. As can be seen in Figure 6, the Gaussian mixture model captures the general
shape of the workspace, but overshoots the bounds of the Monte Carlo samples. This can be seen by
inspecting the four distributions in Figure 7. In each example, the mean position is nicely located
at the centroid of the MC samples, but the ellipses do not perfectly capture the shape of the overall
distribution. The third order moment would be necessary to capture the skewness of the distribution.
Nonetheless, this approach is useful for scenarios where a basic shape estimate is desired in a short
time window such as onboard path planning and rapid design. In the future, higher-order moments
will be accounted for in the model.
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Figure 7. Four different workspace regimes for the T-bar tensegrity robot

Example: Workspace Generation for a 4-link manipulator in R3

As mentioned in the Methodology section, this approach can also be applied to manipulators in
R3. In this example, we evaluate the workspace density of a 4-link robotic manipulator with 3D joint
angles. The manipulator is constructed from four rigid links with length ` = 1. We parameterize the
joint rotations with (3-2-1) = (ψ, φ, θ) Euler Angles uniformly bounded between -40 and 0 degrees.
However, in this example the links cannot rotate about their own axis, so φ = 0. As in the previous
examples, random samples are taken for each joint angle and propagated through the kinematics
model. Then, we compute the mean and covariance of the end effector and evaluate the accuracy of
the approach.

Figure 8 shows an isometric view of the manipulator and its workspace in R3. The grey ellipsoid
is the 50% confidence interval obtained from moment propagation. The orange, yellow, and purple
ellipses are projections of the ellipsoid onto the XY,YZ, and ZX planes, respectively. Random
samples are plotted in blue. By viewing the workspace from different vantage points in Figure 9,
one can see how the ellipsoid captures most of the random end-effector samples. To better compare
the competing methods, we project the 3D workspace onto its component planes and plot the results
in Figure 10. It can be seen how the mean is located near the centroid of the random samples and
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the ellipses accurately capture the shape of the distributions to the second order.

Figure 8. Isometric view of the 4-link manipulator and its workspace in R3

(a) yz view (b) zx view (c) xy view

Figure 9. Workspace generation for a 4-link manipulator in R3

13



(a) yz-plane (b) zx-plane (c) xy-plane

Figure 10. Projection of workspace onto coordinate axes for the 4-link manipulator

CONCLUSIONS AND FUTURE WORK

In this work, we showed how statistical moments can be used to generate the shape of a robot’s
workspace in a computationally efficient manner. For an n-link manipulator, this reduces the prob-
lem into n one-dimensional quadrature schemes rather than sampling an entire n-dimensional space.
This allows us to avoid the computational bottleneck that arises due to the exponential growth of
samples. In the Methodology section, we showed how to evaluate the expectation integrals via
Gauss-Legendre Quadrature. Gaussian Quadrature is desirable due to the low number of quadra-
ture points required to integrate across the one-dimensional angle space. Other quadrature schemes
are available for evaluating higher-dimensional expectation integrals.25 One such scheme is the
Conjugate Unscented Transform (CUT),26, 27 which can evaluate high-dimensional expectation in-
tegrals with few points. By solving for higher-order moments, one can better estimate the shape of
a non-Gaussian workspace.

In the Results section, it was shown how the first two statistical moments can be used to pro-
vide a Gaussian approximation of a manipulator’s workspace. First, we proved the efficacy of the
method on a basic 3-link serial manipulator. This was done by comparing nine different Monte
Carlo simulations to the confidence intervals generated via moment propagation. In each case, the
Gaussian approximation does a nice job of capturing the shape of the workspace. We also showed
how the method can be extended to 3D joint rotations by parameterizing the angle space with Euler
Angles. Finally, we showed how several Gaussians can be mixed to generate the workspace of a
novel tensegrity robot. In general, workspace generation can be difficult for tensegrity structures
due to the static equilibrium constraints. However, given knowledge of one module’s reachability,
we can serially arrange the modules to generate a multibody system whose workspace can be easily
computed through moment propagation. Due to this result, the methodology presented here could
be generally applied to the rapid design and planning for any modular structure.
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