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Abstract— This paper introduces the concept of time-varying
Koopman operator to predict the flow of a nonlinear dy-
namical system. The Koopman operator provides a linear
prediction model for nonlinear systems in a lifted space of
infinite dimension. An extension of time-invariant subspace
realization methods known as the time-varying Eigensystem
Realization Algorithm (TVERA) in conjunction with the time-
varying Observer Kalman Identification Algorithm (TVOKID)
are used to derive a finite dimensional approximation of the
infinite dimensional Koopman operator at each time step. An
isomorphic coordinate transformations is defined to convert
different system realizations from different sets of experiments
into a common frame for state propagation and to extract
dynamical features in the lifted space defined by the eigenvalues
of the Koopman operator. Two benchmark numerical examples
are considered to demonstrate the capability of the proposed
approach.

I. INTRODUCTION

Recent advances in nonlinear system identification have
used the Koopman operator theoretic approach to obtain
precise predictions of a nonlinear dynamical system as the
output of a truncated linear dynamical system. The main
idea behind the Koopman theory [1], [2] is to lift the
nonlinear dynamics into a higher dimensional space where
the evolution of the flow of the system can be linear.
Even though the core challenge of the Koopman operator
theoretic approach is to specify (directly or indirectly through
decompositions) the Hilbert space of measurement functions
of the state of the system, the theory has been applied
for uncontrolled [3], [4] and controlled systems [5], [6]
with promising results using popular subspace realization
methods such as dynamic mode decomposition (DMD) and
its extensions [7]. The resulting linear operator is a local
approximator of the nonlinear dynamical system valid in the
neighborhood of a nominal point and the domain of validity
of this local linear approximation improves as the dimension
of the lifting space is increased. However, one may need a
very large dimensional lifting space to accurately capture the
flow of the underlying nonlinear system.

One of the alternative to improve the validity region of the
Koopman operator and curtail the dimension of the lifting
space is to consider the linearization of the nonlinear flow
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about a nominal trajectory of the nonlinear system rather
than a nominal point. The linearization about a nominal
trajectory leads to a linear time varying (LTV) system as
opposed to a linear time invariant (LTI) system for the
conventional Koopman operator. However, LTV systems
exhibit distinct properties, as compared to the shift invariance
exhibited by LTI systems. All the subspace methods for
LTI system identification exploit the fact that an infinity
of system realizations exist and actually share the same
Markov parameters (also known as system impulse response
functions) and the eigenvalues of the state transition matrix.
However, no such property exists for the LTV system. The
lack of similarity transformations handicap the application
of conventional subspace methods such as DMD to identify
LTV systems. The literature in linear time varying system
identification [8]-[15] is limited as compared to LTI system
identification by the fact that there are no approaches to find
similarity transformations between the model sequences. In
our earlier work [13], [14], it is shown that there exist special
reference frames, in which the identified models are similar
to the true model, i.e., state transition matrices share the same
eigenvalues. Using this key result the realizations can be
compared across different data sets. This forms the basis for
spectral characterization of the time varying systems and the
resulting algorithm is known as the time varying eigensystem
realization algorithm (TVERA).

This paper exploits the TVERA formulation in conjunction
with the idea of lifted space of measurement to develop
a time-varying Koopman operator. The important notion of
kinematically similar (topologically equivalent) realizations
is discussed and used as a tool to compare the resulting iden-
tified model. Furthermore, this paper also briefly introduces
the connection between the Koopman operator and higher-
order state transition matrices. It is shown that the elements
of the Koopman operator corresponds to higher-order state
transition matrices when a polynomial basis is used for the
lifting space. This is equivalent to doing a Taylor series
expansion of the nonlinear flow about a nominal trajectory
with the order of expansion being equal to the order of lifting
functions.

The structure of the paper is as follows: the next section
introduces the time-varying version of the Koopman operator
and discusses the inherent difficulties associated with the
identification of time-varying Koopman operator. Section III
describes the methodology to build a time-varying Koopman
operator while using the TVERA algorithm and coordinate
frame corrections to obtain similar system realizations for
different data sets. Finally, Section IV considers two numer-
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ical examples of increasing complexity and showcases the
capability of TVERA combined with the Koopman lifted
space of measurements to accurately predict the output of
nonlinear dynamical systems.

II. PROBLEM STATEMENT

Let’s consider a dynamical system in a state space form

d

&w = .f(ta mau)v (1)

where £ € R" is the state of the system (also usually the
unknown minimal set of variables needed to describe the
evolution of the system), w € R" is a control input to the
system and f is a function of vector field that describes how
the system changes at a given state in time. Let F' be the
flow of the dynamical system that maps the state from one
time to the other:

i1 = F(xg, ug) 2

with xy, = x(kAt) and ui, = u(kAt). If x(x, u) represents
a set of measurement of the pair (z,u) in the Hilbert
space JF, then the infinite-dimensional Koopman operator
K provides a linear operator for the transition of these
measurements forward in time, i.e.,

Xr+1 = KXk 3)

where
X = | Xk | = x(zk, ug) 4)
Each xi = X'(zk,ux), i = 1,2,..., is assumed to be

observable in F. For this purpose, the states of nonlinear
system xj are included as first n components of X, [7].
Note that Eq. (3) provides an infinite dimensional LTI system
version of the nonlinear flow of Eq. (2) in the measurement

space F. Since X1 = X(Trt1, Uk+1) = X(F(xp,ur)),
one can write

Kxr = xp o F. @)

The central observation is to notice that there has been a trad-
ing between nonlinear dynamics in a finite-dimensional space
and linear dynamics in a potentially infinite-dimensional
lifted space. The Koopman operator is shown to fully capture
all properties of the underlying nonlinear dynamical system
provided that the state vector xj is observable from lifted
space measurements, x; [3], [4].

Though the Koopman operator is ideally an infinite di-
mension, the measurement vector ), is generally truncated
to finite dimension /N >> n. In order to obtain a linear pre-
diction model, the following structure for . is assumed [5]
which is equivalent to assuming f(¢,«,u) to be control
affine:

X (Tr, ug) = { u,

Local — Global Infinite dimension
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Fig. 1: Global representation of the Koopman operator

where 1 (x;) represents the mapping of the dynamical
system states in the lifted space. Now, the problem of finding
the Koopman operator can be restated as the identification
of following LTI system given the time histories of X, ux:

Zp+1 = Az + Buy, (N
W, = Czp, + Duy, 8)

Generally, zj, is assumed to be N-dimensional hidden state
vector corresponding to Koopman dynamics, however, one
can also estimate the dimension of zj as part of the iden-
tification process. @Abk is the estimated measurement vector.
The estimate for the state of the nonlinear system, denoted
by &; can be extracted from the first n components of {bk.
The unknown system matrices (A, B, C, D) are found such
that the norm of the measurement error i.e., |9, — ¥, || is
minimized. Conventional subspace decomposition methods
such as the Eigensystem Realization Algorithm (ERA) [16]-
[18] or Dynamic Mode Decomposition (DMD) [19]-[21]
are used to provide observable and controllable realizations
for the system matrices (A, B,C), hence performing a
linearization about a single point of the dynamical system
in the lifted space. In earlier work [3]-[7], it is shown that
the state prediction error improves as the dimension of the
lifted space, N is increased. Generally, N needs to be much
larger than state dimension n for the Koopman operator to
provide a good prediction of the system states.

In this work, we seek a time varying Koopman operator
as an alternate mean to increase the prediction accuracy for
a fixed dimension of the lifted space, i.e.,

Xer1 = Kexp, &)

The identification of time varying Koopman operator corre-
sponds to finding a LTV system in the lifted space, i.e.,

(10)
(1)

Development of methods for time-varying systems have
involved recursive and fast implementations of time in-
variant methods by exploring structural properties of the
input—output realizations [22] or by generalizing several

Zip+1 = Arzi + Bruy
P, = Crzr + Dyuy
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concepts in classical linear time invariant system theory
consistently [8], [9]. More recent efforts [15] have concen-
trated on extending LTI subspace realizations methods by
considering moving time windows and weighting factors on
the data sequence or introducing explicit parameters to take
into account the time-varying amplitude of the corresponding
modes during the decomposition phase of the algorithm [23].
However, these efforts suffer from the lack of a method to
find similarity transformations between the model sequences
for LTV systems obtained from different experimental data
sets. For example, the algorithm outlined in Ref [15] is
applicable to identify a LTV system from initial condition
response data. Mixed experiments, including initial condition
and controlled input response experiments, result in identi-
fication of different realization, of system matrices at each
time. If there were different coordinate systems defined by
the Lyapunov transformation wy, = T}z, whose state space
realization is given by wy41 = Frwy + Gruy, along with
{pk, = Hpwy, + Dyuy, then the realizations Ay, Iy are NOT
similar. This is in sharp contrast to the LTI theory, where a
variety of realizations (all of infinity of them, that share the
same Markov parameters) share the same spectrum. Hence,
the lack of a method to find a common reference frame in
which different realizations for the LTV system are similar
is considered the main drawback of many LTV system
identification methods. In Refs [13], [14], it is shown that
there exists special reference frames in which the models are
similar, i.e., flk, Fk share the same eigenvalues. This special
reference frame can be determined from controllability and
observability matrices corresponding to different realizations
of the system matrices. The resulting algorithm is known
as TVERA and the next section discusses its application to
obtain the time-varying Koopman operator.

III. TIME-VARYING KOOPMAN OPERATOR

This section discusses the TVERA approach to obtain
the time-varying Koopman operator approximation for the
nonlinear system response from the time history of con-
trol inputs and measurements in lifted-space obtained from
repeated experiments. The idea of repeated experiments
have been introduced in Ref. [10], [24] and presented as
practical methods to realize conceptual time-varying state
space model identification strategies. From a perspective of
generalizing the LTI subspace methods to the case of time-
varying systems, a time-varying version of ERA has been
developed in [13]. Additionally, it has been showed that the
generalization thus made enables the identification of time-
varying plant models that are in arbitrary coordinate systems
at each time step and a time-varying transformation is derived
to convert system states at different time into one common
frame. Furthermore, an asymptotically stable observer (to
remedy the problem of unbounded growth in the number
of experiments), a companion algorithm, the time-varying
observer/Kalman-filter system identification (TVOKID), has
been developed to work alongside with TVERA for the
identification of time-varying Markov parameters from ex-
perimental data [14]. This section summarizes the key ideas

of the TVERA algorithm and one should refer to [13] for
more details on TVERA.

A. Time-Varying Eigensystem Realization Algorithm
To get insight into the TVERA process, let us consider
the solution of the difference equation of (10)
k—1

Yy, = Crdr,0To + Z h(k,i)u; + Dyuy,
i=0

(12)

where ®(k, i+ 1) is the state-transition matrix defined as

Ap_1Ap_o.. -Ako for k > ko,
Ok ko) =< [ for k = ko, (13)
undefined for k < kqg.

and hy; are the generalized Markov parameters (or pulse
response matrix) defined as

Cr®(k,i+1)B; fori<k—1,
o CkBk—l fori =k — 1,
hei=\ p, for i = k, (14
0 for ¢ > k.

The identification of time-varying system matrices involves
the construction of a Hankel matrix H ,(f) ) at each time step
consisting of generalized Markov parameters,

B k1 P k—2 R k—q
H,(f’(” _ hkﬂv’f—l his1 k-2 hk+1.,k—q
hk’—&-p—l,k,—l hk+p—1,k’—2 hk’-‘rp—l,k—q
=0 R?, (15)

where O,(f ) and R,(Cq_)1 are the observability and control-
lability matrices. The generalized Markov parameters are
identified through a least squares process from Y time
histories obtained from forced response experiments while
initial condition response is used for the construction of the
Hankel matrix for the first few time steps as explained in
[13]. Notice that the rank of the Hankel matrix will be N
for fully controllable and observable lifted space otherwise
the rank of the Hankel matrix will be equal to the rank
of completely observable and controllable subspace. The
singular-value decomposition (SVD) of H allows for the
identification of the current observability and controllability
matrices,

Hy = UV, = UMMy T — 0P R, (16)

N N 1/2
I
(N)

where X7’ contains N non-zero singular values of the

Hankel matrix and matrices U,(CN) and V,(CN) are constructed
from first N columns of U}, and V. Finally, the following
expression for the identified system matrices are obtained by

considering block shifted Hankel matrices [13]

Ay = OfﬁlTO,(Cp)T, By, = R,(Cq)[:, 1:7], (18)
Ce =0OW[1: N3], Dy = hys. (19)
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Note that O;f "= O,(szlAk is the block shifted controlla-
bility matrix.

This methodology based on TVERA allows one to con-
struct a time-varying version of the Koopman operator for
identifying the system matrices of a controlled time-varying
dynamical systems. It is shown in [13] that the identified
time-varying plant models that are in arbitrary coordinate
systems at each time step are compatible with one another,
owing the fact that they belong to the same set of exper-
iments. If two realizations are derived from two different
sets of experiments, they will not be compatible for state
propagation: the state given in a certain coordinate system
cannot be propagated to the next time step unless the state
transition and control influence matrices are expressed in the
same (or compatible) coordinate system as the initial state
of interest. Moreover, two system matrices Ay and flk are
NOT similar because the system evolution takes place in two
different coordinate systems. The next section summarizes
an approach to find the isomorphic transformation between
successive frames.

B. Frame Correction

As discussed in the previous sections, the identified Ak
at each time k is not represented in the same coordinate
system as the true system representation Aj and the state
propagation for linear time-varying systems takes place be-
tween time-varying coordinate systems. While the system
matrices do not need any type of correction during the
propagation itself, two equivalent realizations Aj and Ay,
are not similar; rather they are topologically equivalent.
Topological equivalence (or kinematic equivalence) means
that there exists a sequence of invertible, square matrices 7}
such that

Ay, = T, ATy (20)

Because the system evolution takes place in two different
coordinate systems defined by Ty and Tj,1, respectively.
This leads the basis vectors for the initial time step and the
final time step to be different. These frames are defined by
left and right eigenvectors of the Hankel matrix during the
identification of observability and controllability matrices.

Following the development in [13], let us consider Ay as
the linear transformation of Ay:

X ~ T ~ ~
A = Oy Op1 4
= Tk_lokTOk—HTk—&-lT;;,_llAka
=T 0,104 11 AL Ty,
—_——

Ay

=T ATy, (1)

where Oy is the observability matrix at time k and by

virtue of (21), Ak and flk are now similar matrices, i.e, they
share the same eigenvalues. One can utilize the observability
matrices corresponding to two different identified realizations
of the system matrices to define a common frame to predict
system response. In this new frame, the two different real-
izations are also guaranteed to be similar.

C. Choice of Lifting Functions

One of the core challenge of the Koopman operator
theoretic approach is to specify (directly or indirectly through
decompositions) the Hilbert space of measurement functions
of the state of the system [5]. Indeed, there is no doubt
that the ability of an analyst to apprehend the behavior of a
dynamical system strongly depends upon the mathematical
representation of the physical system, due to the fact that
nonlinearity is not an inherent attribute of a physical system,
but rather dependent upon the mathematical description
of the system’s behavior [25]. In other words, identifying
the correct measurement functions may not be simple and
may become arbitrarily complex once iterated through the
dynamics. Oftentimes, a more automatic way of building the
Koopman operator is considered by selecting an orthogonal
basis. For example, when a polynomial basis is chosen to
represent the Koopman operator, then it is closely related
to Carleman linearization [26], [27], which has been used
extensively in nonlinear system analysis [28]-[31]. An in-
teresting point worth noting is that the first n rows of the
Koopman operator corresponds to coefficients of higher-
order state-transition matrices. To get an insight into this,
let us consider the Taylor series expansion of the flow of
nonlinear dynamical system of (22) for zero input, i.e.,

iy 0%z
0q, , = —2FL5 WAL Sy, Oxe,, + ..., (22
Tar Dxp, T T Oxyp, 0z, o Oey + -0 (22)
a,b,c=1,2,...,n (23)

Hence, one can directly identify coefficients of aforemen-
tioned Taylor series expansion (also known as higher order
state transition matrices) when one uses polynomial basis for
the lifting process. In general, the upper-left n x n block
matrix will corresponds to the first-order state transition
matrix and coefficients in other columns will simply be
the exact same coefficients of higher-order state transition
tensors, but rearranged:

ol Al

Ap = 2 3
AP AP

(24)

A(rl) will contain coefficients of higher-order tensors while
Azz) and Ag) are sensitivities associated with higher-order
polynomial measurements.

Hence, the use of polynomial basis functions in the lifting
process helps us in identifying higher order terms in Taylor
series expansion of nonlinear flow.

IV. NUMERICAL EXAMPLES

This section considers two problems to showcase the
utility of the time-varying Koopman operator in predicting
the response of a nonlinear system. The first example cor-
responds to a benchmark problem where a finite dimension
Koopman operator can be derived while the second example
corresponds to nonlinear oscillator where a finite dimension
approximation of infinite dimension Koopman operator is
discussed. In both the examples, polynomial basis functions
are considered for the lifting process and time-invariant
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Koopman operator is also identified to showcase the accuracy
gained for the same degree of the lifting process.
A. Single fixed-point Problem
Let us consider a time-varying version of a single fixed-
point nonlinear dynamical system introduced in Ref. [6]:
&= p(t)r, §=At)(y - 2?) (252)
wu(t) = —0.5+ 1.5sin(4n), A(t) = —0.2 4+ 0.5 cos(67t)
Notice that one can obtain the following analytical ex-

pression for the continuous time Koopman operator by
appending the state vector with 22 as measurements, i.e.,

= {x,y,2%}:
p(t) 0 0
Kit)y=10 At) —=A() (26)
0 0 2u(t)
Furthermore, one can write:
Zit1 = Anzi, 26 = [T, Yk, T2)7, (27)

For identification purposes, the measurement data is recorded
at a frequency of 10 Hz for a time interval of 0-10 seconds.
Two random initial conditions drawn from zero mean normal
distribution of standard deviation oy = 0.1I> are used to
simulate the response of the nonlinear system for identifica-
tion purposes. Figure 2 shows the phase plot displaying the
true and identified trajectories (from random initial condition
with same distribution) while Table I presents the overall
root mean squared error (RMSE) for the two predicted
trajectories. As expected, the prediction error corresponding
to conventional time invariant Koopman operator is several
order of magnitude worse than the prediction error for the
time varying Koopman operator.

TABLE I: RMSE for the trajectories predicted by the two
operators

| TI Koopman | TV Koopman |
[[12:107" | 35-10° |

Table II presents the RMS error associated with the time
evolution of the three discrete-time eigenvalues of true as
well as identified Aj matrices after applying for appropriate
coordinate transformations. Since eigenvalues match with
a very good accuracy, the identified model is not only
able to reproduce I/O data of the time-varying original
dynamical system but was also able to capture dynamical
features embedded in the time-varying state transition matrix.

TABLE II: RMSE for the time-evolution of the TI and TV
Koopman Operators eigenvalues
| Eigenvalue n° [ TI Koopman | TV Koopman |

Eigenvalue 1 1.4-1072 5.8-10710
Eigenvalue 2 1.5-1072 5.4-1010
Eigenvalue 3 1.5-1072 1.1-1077

The next example will present a more challenging situation
where there is no easy closure for the Koopman operator,

014 _-: — True

! — = Time-varying Koopman
+ Time-invariant Koopman

T
0.0 0.1 0.2 0.3 04 0.5

Fig. 2: Phase plot for the single fixed-point problem

hence testing the capabilities of TVERA to provide a finite
approximation.

B. Duffing Oscillator with time-varying parameters

The second example corresponds to the nonlinear oscilla-
tor known as the Duffing oscillator governed by following
equations with time-varying coefficients

=y, y=—06(t)y—alt)r—B{t)z® +u(t) (28a)
§(t) = 0.2 + 0.1 sin(4rt) (28b)
a(t) =14 0.1sin(67t + 7/2) (28¢)
B(t) = —1+ 0.1sin(87t + ) (284)

Unlike the previous example, the Koopman operator aug-
mented with polynomial measurements in x and y is of
infinite dimension. Three different cases are considered cor-
responding to different order lifting functions to approxi-
mate the true infinite order Koopman operator with finite
dimension time invariant as well as time-varying Koopman
operators.

1) Case 1: Linear basis functions in x and y.
2) Case 2: Basis function up to degree 2 in = and y.
3) Case 3: Basis functions up to degree 3 in z and y.

The measurement data is recorded at a frequency of 10
Hz for 20 seconds for the simulation purposes. For this
representative case, it is desired to identify the time-varying
linear departure dynamics from the nominal trajectory. A
nominal trajectory with initial condition g = [0.1 —0.2] T
and zero input is considered. A true trajectory is simulated
by random sampling of initial deviation from a zero mean
Gaussian distribution with standard deviation of 0.05 with
zero input for identification purposes.

Table III shows the RMS error averaged over 10 random
runs for all the three test cases. As expected, the predic-
tion errors corresponding to time-varying Koopman operator
are 3-4 orders of magnitude better than prediction errors
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corresponding to time-invariant Koopman operator. This nu-
merical simulation also confirms that the accuracy of the
time-invariant as well as time-varying Koopman operators
improves with the increase in lifted degree. Furthermore, the
time-varying Koopman operator provides at least two order
of magnitude better prediction accuracy than the prediction
errors corresponding to conventional time-invariant Koop-
man operator for all the three test cases. While the accuracy
of the time-invariant Koopman operator for lifted degree
3, i.e., test case 3 is comparable to actual linearization of
the nonlinear flow, the prediction accuracy corresponding to
time-varying Koopman operator is five orders of magnitude
better than its time-invariant counterpart for lifted degree 3.
These results clearly demonstrates the effectiveness of the
time-varying Koopman operator as compared to conventional
time-invariant Koopman operator.

TABLE III: RMSE for the Duffing departure trajectories
Lifted space TI Koopman | TV Koopman
Case 1 7.5-1073 8.8-10°°
Case 2 6.9-1073 2.4-107°
Case 3 8.0-1071 9.1-10°8
Actual Linearization 7.1-107%

V. CONCLUSION

The concept for time-varying Koopman operator to predict
the flow of nonlinear dynamical systems is introduced. The
Koopman operator provides an infinite dimension coordinate
system in which the flow of the dynamical system is linear.
An extension of time invariant subspace methods known
as time-varying eigensystem realization algorithm (TVERA)
is used to find a finite dimensional approximation of the
time-varying Koopman operator. A key advantage of the
TVERA formulation is that it also provides a coordinate
transformation for linear time-varying systems in which dif-
ferent realizations of the system are similar. Two benchmark
problems showcase the utility of the developed approach and
its relative merits with regard to conventional time-invariant
Koopman operator theory.
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