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Abstract: Vital for Space Situational Awareness, Initial Orbit Determination (IOD) may be used to
initialize object tracking and associate observations with a tracked satellite. Classical IOD algorithms
provide only a point solution and are sensitive to noisy measurements and to certain target-observer
geometry. This work examines the ability of a Multivariate GPR (MV-GPR) to accurately perform IOD
and quantify the associated uncertainty. Given perfect test inputs, MV-GPR performs comparably
to a simpler multitask learning GPR algorithm and the classical Gauss–Gibbs IOD in terms of
prediction accuracy. It significantly outperforms the multitask learning GPR algorithm in uncertainty
quantification due to the direct handling of output dimension correlations. A moment-matching
algorithm provides an analytic solution to the input noise problem under certain assumptions. The
algorithm is adapted to the MV-GPR formulation and shown to be an effective tool to accurately
quantify the added input uncertainty. This work shows that the MV-GPR can provide a viable solution
with quantified uncertainty which is robust to observation noise and traditionally challenging orbit-
observer geometries.

Keywords: Space Situational Awareness; Initial Orbit Determination; Gaussian Process Regression;
machine learning

1. Introduction

As access to space becomes more readily available, the need for robust Space Situ-
ational Awareness (SSA) increases. Space-object tracking, an integral aspect of SSA, is
performed by a sequential filtering algorithm which must be initialized. To initialize these
orbits, tools collectively called Initial Orbit Determination (IOD) algorithms are utilized
to provide an estimate of a previously unknown orbit. Furthermore, these tracks (orbits)
initialized by IOD algorithms can be used for data association purposes as shown in [1].
Although IOD algorithms have been developed to initiate orbit-tracks from radar as well
as optical sensors, angles-only IOD algorithms represent an area of particular interest due
to the limited availability of deep space radars.

The seminal angles-only IOD algorithms include Laplace’s method, Gauss’ method,
Gooding’s method, and Double-R iteration (all detailed in [2]). Laplace’s method is often
intractable for Earth-based satellites, but does provide a viable solution for heliocentric
orbits. Gauss’ method may be used for Earth-based space objects, but at a limited angular
separation between observations. Double-R iteration and Gooding’s method allow for
longer time periods between observations, but require a guess to initialize the iteration.
These classical angles-only IOD algorithms are sensitive to noise and to certain observer-
target geometryas shown in both our own previous work [3–5] and also various other
IOD studies [6–11]. All angles-only IOD algorithms mentioned utilize the observer-target
geometry and assumptions defined from the Kepler problem to define a point solution,
thus lacking any uncertainty information. The addition of high levels of noise essentially
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violates these relationships and causes severe degradation in accuracy. Additionally, a
well-known failure case for these algorithms is known as a coplanar orbit. This occurs
when the observation site lies close to the target’s orbital plane causing a singularity in
many of the underlying algorithms. Though each of the IOD algorithms have a different
formulation, all leverage the observer-target geometry; therefore, accuracy may severely
degrade near coplanar orbits. In summary, many existing IOD algorithms do not inherently
provide uncertainty information, are sensitive to sensor noise, and degrade in coplanar
observer orbit geometries.

There exists an avenue to address the shortcomings of the classical IOD algorithms
using a supervised learning method known as Gaussian Process Regression (GPR) as
first proposed in our previous works [3,5]. The motivation of this paper is to examine
the efficacy of GPR in providing an accurate solution with quantified uncertainty to the
angles-only IOD problem both in general and in traditionally challenging observer-target
sensing geometries.

While learning methods have been proposed to address the orbit determination
problem, most methods focus on the range and range-rate orbit determination problem as
in [12] or as a correction term to a sequential filter. GPR itself has even been introduced
in the orbit determination space by Peng and Bai [13] who fuse the model estimate of a
Kalman filter with the a GP model to essentially correct the orbit determination output of
the sequential filter.

GPR methods outperform many regression techniques [14], and Rasmussen and
Williams [15] demonstrate GPR’s ability to learn the complex, nonlinear inverse dynamics
of a robotic arm with seven degrees-of-freedom. In its basic formulation, GPR assumes
either a scalar output or independence between output dimensions. Many formulations
exist to expand this method to vector-valued processes, as surveyed by Liu et al. [16],
but the method most pertinent to this work vectorizes the process in both the data and
output dimension [17–19]. Chen et al. [20] shows that this method is equivalent to defining
a matrix-variate distribution. Additionally, GPR assumes deterministic input in the original
formulation. In this work, training is performed via simulations, so perfect inputs may be
assumed for training. In a real-world scenario, the inputs for inference are measurement-
based with a defined uncertainty. Given GPR in inherently nonlinear, input noise cannot
be directly mapped to the regression output. The work of Candela et al. [21] shows how
one may exactly define the first and second statistical moments of the unknown output
distribution. This defines a way to simultaneously define an initial orbit with accurate
uncertainty quantification given uncertain inputs. This work builds upon our previous
works [3,5,22] in showcasing the ability of Multivariate GPR (MV-GPR) to provide a solution
to the IOD problem while providing accurate uncertainty characterization given uncertainty
inputs at inference. The objective is to train the MV-GPR from perfect simulations and then
exploit the work of Candela et al. [21] to accurately characterize the errors associated with
IOD estimates while taking into account for measurement errors.

The structure of the paper is as follows: first, an overview of classical IOD algorithms
is presented, followed by the review of conventional GPR process. Section 4 presents the
MV-GPR formulation, followed by definition of model hyperparameters in Section 5 and
testing with noisy data in Section 6. Section 7 provides results from various numerical
experiments performed to assess the performance of MV-GPR for the IOD problem, and
Section 8 provides the concluding remarks.

2. Classical Initial Orbit Determination

While many algorithms exist which provide a solution to the angle-only IOD problem,
this work will focus on one of the oldest and well documented methods known as Gauss’
method to provide a benchmark for the GPR-based IOD method. Like most IOD algorithms,
Gauss’ method leverages the geometry of the observer and target at three measurement
times (t1, t2, t3), defined by
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ri = ρiL̂i + rsite,i, i = 1, 2, 3, (1)

where r denotes the spacecraft position vector, ρ denotes the range and L̂ denotes the unit
vector from observer to target, rsite denotes the observer’s position vector, and i indexes the
time of measurement. These lines-of-sight may be determined by topocentric measurements
of the right-ascension (RA) and declination (DEC) such that

L̂i =

cos(DECi) cos(RAi)
cos(DECi) sin(RAi)

sin(DECi)

. (2)

The geometry of defining Equations (1) and (2) is shown in Figure 1. With L̂i and
rsite,i known at each measurement, the problem becomes estimating the range in order to
determine the radius vector at each measurement. Given the observer’s position is well
defined, three linearly independent line-of-sight measurements, and the times of each
observation, Gauss’ method provides an estimate for the position at the three observations
by posing an 8-th order polynomial of ||r2||. The algorithm takes advantage of the planar
nature of orbits and the method of Lagrange coefficients for propagating orbits as a linear
combination of position and velocity, commonly referred to as the f and g solution. Given
an estimate for the three position vectors, a prediction of the instantaneous v2 can be
defined utilizing the approximate the f and g solution. With r2 and v2 now estimated, the
target’s Cartesian state is fully defined.

Figure 1. Geometry of angles-only Initial Orbit Determination.

In more recent history, methods to increase the accuracy of the method have been
defined. Most notably, Gauss’ method is combined with Gibbs’ or the Herrick–Gibbs
methods to provide a more accurate v2 measure [2]. Both Gibbs’ and the Herrick–Gibbs
methods are IOD algorithms that start with the premise of three known position vectors
and times of measurement then solve for the middle velocity. Gibbs’ method is a geometric
approach while Herrick–Gibbs essentially represents a series expansion. Therefore, the
Herrick–Gibbs algorithm is the best for measurement separations around 1◦ or less, while
Gibbs’ method is used for larger angular separations as stated in [2]. This work uses the
combined Gauss–Gibbs method as the IOD benchmark. Additionally, Curtis in [23] defines
an iterative scheme using universal variables which refine the “initial pass” estimated by
Gauss’ method to determine the exact solution assuming perfect measurements. This will
be referred to as an iterative Gauss–Gibbs method throughout the rest of this paper.
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3. Standard Gaussian Process Regression (GPR)

As defined in [15], a Gaussian Process is a collection of random variables, any finite number
of which have a joint Gaussian distribution. Therefore, analogous to the Gaussian distribution
for random variables, the GP is completely defined by its mean and covariance functions:

f (x) ∼ GP(µ(x), k(x, x′)), (3)

where x ∈ Rm. The mean and covariance functions are defined using the expectation,
such that

µ(x) = E[ f (x)]

k(x, x′) = cov( f (x), f (x′)) = E[( f (x)− µ(x))( f (x′)− µ(x′))].
(4)

By defining functions as simply an infinite-dimensional vector, the GP can be compared
to a Gaussian distribution with an infinitely-sized mean vector and covariance matrix.
Therefore, every subset of the distribution is defined by the full distribution due to the
marginalization property of Gaussian processes [15]. Now, let the model be defined as

y(x) = f (x) + ε (5)

where y(x) ∈ R and ε ∼ N (0, σ2
n) represents model noise. Let there be a finite data set

D = {(xi, yi)|i = 1, ..., N} in the domain and range of Equation (5), then the distribution
of y =

[
y1 y2 · · · yN

]T is defined as a joint Gaussian distribution,

y ∼ NN(µ(X ), K(X ,X ) + σ2
nIN). (6)

K is the relevant submatrix defined from the covariance function of the GP in Equation (5)
such that

K(X, X′) =


k(x1, x′1) k(x1, x′2) · · · k(x1, x′q)
k(x2, x′1) k(x2, x′2) · · · k(x2, x′q)

...
...

. . .
...

k(xp, x′1) k(xp, x′2) · · · k(xp, x′q)

, (7)

where X is any set of p vectors x and X′ is any set of q vectors x′.
While various kernel functions exist, we will focus on the commonly used Squared

Exponential (SE) covariance function:

kSE(x, x′) = σf
2 exp

(
−1

2
(x− x′)TP−1(x− x′)

)
. (8)

The matrix P is often a diagonal matrix which encodes what is known as Automatic
Relevance Determination (ARD). Together, P and σ2

f make up the hyperparameters of the
SE kernel. Given that a specific form of the covariance kernel is specified, the next step
involves determining the optimal hyperparameters, γ, to define the model, which may also
include the model noise, σ2

n .
Now, introducing a single test point, x∗, the marginalization property may again be

invoked such that y and y∗ are defined from the same GP and therefore[
y
y∗

]
∼ NN+1

([
µ(X )
µ(x∗)

]
,
[

K(X ,X ) + σ2
nIN K(X , x∗)

K(x∗,X ) K(x∗, x∗) + σ2
n

])
. (9)

The predictive distribution of y∗ consists of conditioning the prior distribution on the
training observations, which returns a Gaussian defined as
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y∗ |D, x∗ ∼ N
(

µ̂y∗ , Σ̂y∗

)
µ̂y∗ = µ(x∗) + K(x∗,X )

(
K(X ,X ) + σ2

nIN

)−1
[y− µ(X )]

σ̂2
y∗ = K(X ∗,X ∗) + σ2

n −K(X ∗,X )
(

K(X ,X ) + σ2
nIN

)−1
K(X ,X ∗).

(10)

4. Multivariate Gaussian Process Regression

In the formulation above, it is assumed that the output dimension is a scalar. There
are many ways to expand the GPR framework to address multioutput regression problems,
such that y(x) ∈ RD. One can pose the multidimensional output problem as one of
multitask learning. By definition, multitask learning is learning one model to represent
multiple data sets. We can define the training inputs and the j-th dimension as representing
their own data sets, Dj, where j = 1, . . . , D. In this context, the multitask learning problem
will define a GPR model for each of the output dimensions, but the models share the same
hyperparameters. This method is defined as ind-GPR throughout the rest of this work. The
downside is that ind-GPR assumes mutual independence between the outputs, and thus
limits the ability to account for output correlation during training.

Alternatively, a method to address this issue is to vectorize the output [17–19] such that

y = [y1,1, . . . , y1,D, . . . , yN,1, . . . , yN,D]
T . (11)

This reformulates the Multi-Output problem as a standard GPR method discussed
in Section 3. As shown by Chen et al. [20], this may be accomplished equivocally by
generalizing the Gaussian process to a vector-valued function such that

f(x) ∼MGP(µ(x), k(x, x′), B). (12)

Here, k(x, x′) encodes the covariance along the range of the D-vector GP and B encodes
the covariance in the m-dimensions of the vector-valued process. Again, the marginalization
property holds true. Therefore if there exists a finite data set,DMV = {(xi, yi)|i = 1, . . . , N},
then the distribution of Y =

[
yT

1 yT
2 · · · yT

N
]T ∈ RN×D has a joint matrix-variate

Gaussian distribution:

Y ∼MN N×D(M, K, B), (13)

where M ∈ RN×D, K ∈ RN×N , and B ∈ RD×D. As discussed in Chen et al. [20,24], a
matrix-variate Gaussian distribution has a density of the form

p(Y |M, K, B) = (2π)−
DN

2 |K|−
D
2 |B|−

N
2 exp

[
−1

2
tr
(

B−1(Y −M)TK−1(Y −M)
)]

(14)

Additionally, the N × D-matrix-variate normal distribution is may be mapped to a
ND-multivariate normal distribution:

Y ∼MN N×D(M, K, B)⇐⇒ vec(Y) ∼ NND(vec(M), K⊗ B). (15)

Therefore, the work of Chen et al. [20] is similar to previous works [17–19] given
that the matrix-variate distribution may be mapped to a multivariate one for normal
distributions, as shown in Equation (15).

If a test point, x∗, is introduced into this formulation, the marginalization property
used in the standard GPR formulation may also be invoked for matrix-variate normal
distributions [20,25] such that
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[
Y
yT
∗

]
∼MN (N+1)×D

([
M(X )
M(x∗)

]
,
[

K(X ,X ) + σ2
nIN K(X , x∗)

K(x∗,X ) K(x∗, x∗) + σ2
n

]
, B
)

. (16)

As a property of matrix normal distributions, the test output conditioned on the
training data, D = {X ,Y}, is defined as

yT
∗ |D, x∗ ∼MN 1×D

(
µ̂y∗ , Σ̂y∗ , B

)
, where

µ̂T
y∗ = M(x∗) + K(x∗,X )

(
K(X ,X ) + σ2

nIN

)−1
[Y −M(X )],

Σ̂ = K(x∗, x∗) + σ2
n −K(x∗,X )

(
K(X ,X ) + σ2

nIN

)−1
K(X , x∗).

(17)

Using Equation (15), the corresponding multivariate distribution is then defined as

y∗ ∼ ND

(
µ̂y∗ , Σ̂⊗ B

)
. (18)

This method is referred to as MV-GPR throughout the rest of this paper.

5. Defining Model Hyperparameters

Though not necessarily the case, the mean function is often taken to be zero as the
mean of the posterior process will not be constrained to be zero [15]. See Chapter 2.7
of [15] for details on mean function formulation and definition. Therefore, we will assume
a zero-mean prior for both ind- and MV-GPR methodologies. The posterior estimation
will not be confined to be zero [15], and therefore an accurate GPR model may still be
learned. Additionally, we use the square-exponential kernel as defined in Equation (8)
as our covariance function. Therefore, the hyperparameters associated with both GPR
algorithms include σ2

f ∈ R, σ2
n ∈ R, and diag(P) ∈ Rm. For ind-GPR, this results in a set

of hyperparameters to optimize for such as

γind = [σ2
f , σ2

n , diag(P)] ∈ Rm+2. (19)

By contrast, MV-GPR’s hyperparameters also include the elements of the matrix
B. By definition, B must be a positive definite matrix since it defines the covariance
between the dimensions of the vector-valued function f(x). The Cholesky decomposition
for positive definite matrices allows B to be factored such that B = LBLB

T , where LB is a
lower triangular matrix. Optimizing for the elements of LB not only reduced the number
of hyperparameters for MV-GPR, but also ensures B is positive definite. This adds an
additional 1

2 D(D + 1) hyperparameters to optimize, thus giving

γMV = [σ2
f , σ2

n , diag(P), vec(LB)] ∈ R
1
2 D(D+1)+m+2. (20)

Under the ind-GPR assumption, the cost function for optimization of the hyperparam-
eters is accomplished using the negative-log-likelihood

NLLind =
D

∑
j=1

(
−1

2
yT

j K−1
y yj −

1
2

ln det(Ky)−
N
2

ln 2π

)
. (21)

The MV-GPR algorithm directly uses its negative-log-likelihood as its cost function
such that

NLLMV =
mN

2
ln(2π) +

m
2

ln |Ky|+
N
2

ln |B|+ 1
2

trace
(

K−1
y YB−1YT

)
. (22)

The complexity in the training for both methods and the prediction is dominated by
the inverse Ky = (K(X ,X ) + σ2

nIN)
−1, assuming N >> m. There is no guarantee that
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optimization for either formulation will not suffer from local optima. As stated in [15],
the local optima are not often devastating for less complex covariance functions and will
provide differing interpretations of the data. For instance, let us state that a given problem
has two optima: (1) an optimum with high σ2

n and a high length-scale and (2) an optimum
with the low σ2

n and a low length-scale. Case (1) would correspond to a very smooth mean
curve with large, smooth uncertainty bounds. Case (2) would result in a mean curve that
passes much closer to the individual training points and reflect uncertainty bounds which
shrink significantly near those points.

6. Estimate Given Random Test Inputs

As formulated, the GPR algorithm assumes perfect inputs into the regression model.
This is not often the case in engineering systems. In this study, perfect inputs, X , and
perfect outputs, Y , generated from Equations (1) and (2) are used during training. In real
world scenarios, only measurements of the input are available at inference, such that

x∗ ∼ N
(

µx∗ , Σx∗

)
. (23)

Given that GPR is a nonlinear function in x∗, the true predictive distribution of the
GPR output will not be Gaussian. However, it may be approximated by a Gaussian with the
same mean and covariance as the true distribution, i.e., moment matching. The following
moment matching derivation stems from the method defined by Candela et al. [21] and
presented in chapter 2 of Deisenroth [26] with amendments due to the use of MV-GPR
presented in Section 4.

The mean of the predicted distribution given these approximations is

µ̂y∗ =
∫∫

f∗p(f∗, x∗)d(f∗, x∗) (24)

where f∗ = f(x∗). Given that Ef∗ [f∗|x∗] = YT(K(X ,X ) + σ2
nIN

)−TK(X , x∗) via
Equation (17) and utilizing the law of iterated expectations,

µ̂y∗ = Ex∗ [Ef∗ [f∗|x∗]]

= YT
(

K(X ,X ) + σ2
nIN

)−T

︸ ︷︷ ︸
ΦT

∫
K(X , x∗)N

(
µx∗ , Σx∗

)
dx∗︸ ︷︷ ︸

q

(25)

where q = [q1, . . . , qN ]
T ∈ RN . Using the square-exponential covariance function in

Equation (8) gives an analytic definition for qi:

qi = σ2
f

∣∣∣Σx∗P
−1 + Im

∣∣∣− 1
2 exp

[
−1

2
(xi − µx∗)

T(Σx∗ + P)−1(xi − µx∗)

]
. (26)

Similarly, the covariance may be defined using the law of total covariance such that

cov
(

y∗|µx∗ , Σx∗

)
= Ex∗

[
cov
(

fx∗ |µx∗ , Σx∗

)]
+ covx∗(Ef∗ [fx∗ |x∗]). (27)

Using the definition of cov
(

fx∗ |µx∗ , Σx∗

)
from Equation (17), properties of covariance,

and the properties of the matrix trace,

cov
(

y∗|µx∗ , Σx∗

)
=

{
K(x∗, x∗) + σ2

n − tr
((

K(X ,X ) + σ2
nIN

)−1
Q
)}
⊗ B

+

(
ΦTQΦ−

(
ΦTq

)T
ΦTq

)
. (28)

The Q =
∫

K(X , x∗)K(x∗,X )N
(

µx∗ , Σx∗

)
dx∗ term may be defined analytically as-

suming Gaussian input noise and using the square-exponential covariance kernel such that
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Qij =
K(xi, µx∗)K(xj, µx∗)

|2Σx∗P−1 + I| 12
exp

[
(zij − µx∗)

T(Σx∗ +
1
2

P)−1Σx∗P
−1(zij − µx∗)

]
(29)

with zij =
1
2 (xi + xj). Chapter 2 of Deisenroth [26] shows additional details of this method

and a numerically stable way to compute this matrix under a different multioutput GPR
formulation. Due to numerical sensitivity of the noise aware MV-GPR method presented in
Section 6, the method used in this work to address the numerical sensitivity is shown in
Appendix A.

7. Numerical Simulations
7.1. Methodology

Often, statistical learning methods use real data for training purposes. In this work,
data is simulated using the Keplerian solution to the two-body problem. The assumption
of a Keplerian orbit is accurate for short intervals and is also an assumption present for
most other IOD processes. A goal of this work is to study the utility of GPR in learning a
solution to the IOD problem and benchmark the solution against the Gauss–Gibbs method.
This work will utilize the Gauss–Gibbs method without iteration unless otherwise stated.
Iterating on the Gauss–Gibbs solution will return the ground-truth to machine precision if
given perfect RA and DEC measurements. The reasoning behind not including iteration is
twofold. (1) The GPR method is non-iterative and so it also provides a “first pass” solution,
therefore it is more informative to compare the GPR model error it to the well-studied
Gauss–Gibbs “first pass” solution’s error. (2) Iteration provides very limited increase in
accuracy given noisy measurements from a similarly defined noise model as shown in
Chapter 3 of [22].

With respect to the GPR algorithms, it is important to inspect their performance across
challenging data sets and with respect to various training levels. Orbit samples are gener-
ated from ranges of classical orbital elements shown in Table 1, which are tailored directly
for the purposes of this study. The semi-major axis (SMA) is the largest semidiameter of
the orbital ellipse, and the eccentricity, e, uniquely characterizes the shape. The inclination,
longitude of the ascending node, argument of periapsis, and true anomaly—i, Ω, ω, θ,
respectively—are geometric relationships defined in Figure 2. For a Keplerian orbit, SMA,
e, i, Ω, ω are constant for all time and define the orbit ellipse. θ varies with time and defines
the angular position of the spacecraft within it’s orbit. The given true anomaly in Table 1,
θ2, corresponds to the 2nd measurement time.

Table 1. Orbital regimes for each case used in GPR study.

Orbit Case SMA e i (◦) Ω (◦) ω (◦) θ2 (◦)

Case A [10,000,16,000] [0.1, 0.3] [35, 45] [305, 315] [15, 20] [50, 58]
Case B [6800,40,000] [0.1, 0.3] [35, 45] [305, 315] [15, 20] [50, 58]
Case C [6800,40,000] [0.05, 0.85] [35, 45] [305, 315] [15, 20] [50, 58]
Case D [6800,40,000] [0.05, 0.85] [20, 60] [305, 315] [15, 20] [50, 58]
Case E [6800,40,000] [0.05, 0.85] [20, 60] [295, 325] [15, 20] [50, 58]
Case F [6800,40,000] [0.05, 0.85] [20, 60] [295, 325] [10, 30] [50, 58]
Case G [10,000,16,000] [0.1, 0.3] [35, 45] [−5, 5] [15, 20] [50, 58]
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Figure 2. Geometry classical orbital elements.

Cases A-F in Table 1 progress in the level of difficulty for the GPR methods. Case G
represents a nearly-coplanar orbit regime, which has been notoriously difficult for classical
IOD algorithms. The Cartesian state at the 1st and 3rd measurement time are generated
such that θ has regressed and processed, respectively, between 8◦ and 15◦. This ensures
that the orbits will stay within the effective angular separation for the Gauss–Gibbs IOD
algorithm. The time-of-flight (TOF) measurements are defined using Kepler’s equation
and the line-of-sight vectors for each measurement are backed out using Equation (1). The
observation site is at rsite,1 = [6400, 0, 0]T km in the I JK-frame and rotates with Earth’s
average spin rate. The number of training samples generated vary, but are specified
throughout this work. There are 5000 testing orbits generated for each case in Table 1, with
the resulting orbital arcs shown in Figure 3.

Figure 3. Orbital arcs for 5000 test orbits of the different orbital case regions.
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7.1.1. Gpr Specifics

The inputs to the GPR models are defined as the RA and DEC at each measurement
time along with the time-of-flight information between the first and second measurement,
TOF1, and the second and third measurement, TOF3, such that

x =
[
RA1 RA2 RA3 DEC1 DEC2 DEC3 TOF1 TOF3

]T . (30)

The output is the spacecraft state vector at the second measurement time such that

y =
[
r1 r2 r3 v1 v2 v3

]T , (31)

where ri and vi represent the components of the Cartesian position and velocity, respectively,
at the second measurement. As broken down in Table 2, the number of hyperparameters is
γind ∈ R10 and γind ∈ R31.

Table 2. GPR parameters and their dimesnions in the IOD problem.

Input Output Hyperparamters

Shared MV-GPR Specific

x ∈ R8 y ∈ R6 σ2
f ∈ R σ2

n ∈ R diag(P) ∈ R8 vec(LB) ∈ R21

Normalization of training data is often essential for accurate optimization of machine
learning algorithms. For both inputs and targets, z-score normalization is used such that
the mean of the training data is subtracted and each element is divided by its standard
deviation. Additionally, the Cartesian state and time-of-flight information is transformed
into canonical units such that 1 LU = 6400 km and that µ⊕ = 1 prior to the z-score nor-
malization, which proved to additionally increase performance. Testing data is normalized
utilizing the same method, but with the mean and standard deviations of the training data.

The ind-GPR method is implemented using the API and optimization techniques
provided by Rasmussen and Nickisch in [27], while the MV-GPR implemented in this
work is based on the work of Chen [20] with modifications to the code provided in [28].
Both methods utilize three restarts in an effort to avoid the local minima problem while
balancing the computational cost. Finally, the random input procedure in Section 6 is only
implemented for the MV-GPR formulation and is referred to as noise aware (N.A.), while
the original formulation shall be referred to as standard (STND).

In summary, training is conducted as follows. (1) The outputs—Cartesian position
and velocity—are generated from the classical orbital elements reflected in Table 2. (2) The
inputs—RA, DEC, and TOF—are backed out assuming Keplerian orbits and a perfectly
spherical rotating earth-based observation site. (3) The outputs are written in canonical units
both inputs and outputs are normalized using z-score normalization. (4) Hyperparameters
in Table 2 are optimized using Equation (21) for ind-GPR and Equation (22) for MV-GPR
as cost functions. The software packages [20,27] are used extensively for ind- and MV-
GPR, respectively. Random initial guess and three restarts are used in an attempt to avoid
local minimums.

Testing is conducted as follows. Steps (1) and (2) remain the same for training and
testing on simulated data. (3) Inputs generated from the test points are transformed using
the same shift and scaling generated by the z-score normalization of the training data. (4a)
With the hyperparameters defined via optimization, Equations (10) and (17) are used to
define the predicted state and state covariances for ind- and MV-GPR, respectively. (4b)
Noise in the testing input may be accounted for using the Equation (25) for prediction
mean and Equation (28) for estimated state covariance. The formulation in Appendix A
overcomes some of the numerical issues that appeared when applying the noise-aware
inference formulation presented in Section 6. (5) GPR estimates are transformed back into
Cartesian space using the same shift and scaling used on the training outputs.
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7.1.2. Noise Model

The noise model used in this work is additive Gaussian noise to the RA and DEC
measurements, x∗ = xt + ν, where

ν ∼ N (0, Σx∗), Σx∗ =

[
σ2

x∗ I6×6 06×2
02×6 02×2

]
(32)

and xt is the ground truth measurements defined in Equation (30). Under these assump-
tions, it is assumed that the time of flight measurements are deterministic while the angular
measurements have an normal distribution defined by σ2

x∗ . Given the formulation provided
in Section 6 does not involve Σ−1

x∗ , the singularity of the current covariance matrix does
not affect the solution. If one were to use an equivalent algebraic expression involving the
inverse matrix, then the deterministic and random elements of the input would have to be
separated. For the rest of this work, one may assume σx∗ = 0.05◦ unless otherwise stated
and 5 samples are generated for each of the 5000 original testing orbits—giving 25,000 total
random noisy samples.

7.1.3. Metrics

Due to the wide range of orbits investigated, the measures used in this work include
the absolute percent error (APE),

APE =
|Truth− Prediction|

|Truth| , (33)

and the median absolute percent error (MdAPEi),

MdAPEi = median
([
|Truthi − Prediction1|

|Truthi|
, · · · ,

|Truthi − Predictionns |
|Truthi|

])
,

(34)

where ns defines the number noisy samples and i indexes from which orbit the noisy
samples were generated. Both of these measure error for each element in a given state and
thus represents a vector of the same size as the state it describes. The average corresponds
to the arithmetic mean of the elements in the APE or MdAPEi error vector.

Our first metric, the Malanobis distance is introduced:

dmahal =
√
(y− µ)TΣ̂y∗(y− µ), (35)

where yi is the ground-truth state and µi and Σ̂y∗ ,i is the GPR-predicted mean and covari-
ance, respectively. The Mahalanobis distance is introduced to measure the accuracy of the
covariance estimate. A large number of high (i.e., greater than 3) Mahalanobis distances
would show that the predicted covariance is vastly overestimating the precision of the
estimate. A large number of very low (i.e., less than 1) Mahalanobis distances would show
that the predicted covariance is “too cautious”.

7.2. Accuracy

First, the accuracy of the GPR algorithms is benchmarked against the classical, non-
iterative Gauss–Gibbs algorithm. Figure 4 compares box-plots of the APE for ind- and
MV-GPR at 200, 400, 800, 1000, 1500 along with the Gauss–Gibbs method. The bars
enclose the range of points between the 25th and the 75th quantiles of APE while the point
represents the median APE. Figure 4 shows the APE evolving as the algorithms progress
through the defined cases and as more training points are utilized. Table 3 compares the
median APE of each prescribed method at the most accurate training level, defined by
the median APE averaged across output dimensions. There are multiple useful trends
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which are important to analyze. First, the GPR models surpass Gauss–Gibbs in prediction
accuracy relatively quickly across training levels in cases A and B. This is highlighted in
Table 3 as ind-GPR and MV-GPR at 1500 training points provide estimates an order of
magnitude more accurate than the non-iterative Gauss–Gibbs method. The GPR methods
appear to slowly approach the Gauss–Gibbs accuracy in the more difficult cases E-F due to
the increased sparsity of training data relative to the size of the orbit regime.

As shown in Figure 4, the MV-GPR and the ind-GPR perform similarly for most cases,
with a slight advantage given to ind-GPR at a fixed training level. This edge is due to the
added complexity of the cost function and the 21 additional hyperparameters associated
with MV-GPR. More complex models require denser training sets to more accurately
estimate their hyperparameters. Additionally, notice that the ind-GPR exhibits a steady
increase in prediction accuracy as more training points are added while MV-GPR shows
more erratic behavior. The MV-GPR cost function represents a much more complex surface
and therefore is likely getting caught in local minimums even with the multiple restarts.

Table 3. Median APE for for most accurate model in each orbit case given perfect RA and
DEC measurements.

Case Model Training Level Median APE

Case A
ind-GPR 1500 0.0095 0.0317 0.0303 0.0463 0.0200 0.0850
MV-GPR 1500 0.0089 0.0314 0.0287 0.0563 0.0250 0.1453

GG - 0.0983 0.4646 0.5004 0.2307 0.1718 0.1243

Case B
ind-GPR 1500 0.0534 0.0841 0.0830 0.1255 0.0604 0.1844
MV-GPR 1000 0.0881 0.1529 0.1472 0.3337 0.1485 0.6143

GG - 0.1957 0.3900 0.4321 0.4139 0.2337 0.1174

Case C
ind-GPR 1500 0.0772 0.1603 0.1549 0.3618 0.1371 0.4269
MV-GPR 1500 0.0972 0.2343 0.2234 0.6334 0.2284 0.8049

GG - 0.1576 0.4149 0.4546 0.4413 0.2182 0.2059

Case D
ind-GPR 1500 0.1276 0.2829 0.2371 0.6868 0.2332 0.8654
MV-GPR 1500 0.1257 0.2814 0.2486 0.7773 0.2758 1.0611

GG - 0.1615 0.4083 0.4645 0.4448 0.2267 0.2026

Case E
ind-GPR 1500 0.1637 0.4312 0.3371 1.0399 0.3625 1.1506
MV-GPR 1500 0.2004 0.5669 0.4477 1.4703 0.5296 1.9463

GG - 0.1557 0.3912 0.4458 0.4582 0.2251 0.2112

Case F
ind-GPR 1500 0.2519 0.6297 0.5063 1.2845 0.5387 1.8216
MV-GPR 1500 0.2734 0.7242 0.5911 1.6985 0.6567 2.4545

GG - 0.1495 0.3989 0.4391 0.4091 0.2230 0.2350

Case G
ind-GPR 1500 0.2059 0.2463 0.2513 0.1660 0.4957 0.4790
MV-GPR 1500 0.2089 0.2539 0.2592 0.1734 0.5351 0.5192

GG - 0.4098 0.4964 0.5066 0.2463 0.3569 0.2897

Figure 5 compares box-plots of the APE for standard and noise aware MV-GPR at
200, 400, 800, 1000, 1500 along with the Gauss–Gibbs method. The bars enclose the range
of points between the 25th and the 75th quantiles of APE while the point represents the
median APE. Table 4 displays the lowest median APE as averaged across the Cartesian
states for each method of interest. Referring to Figure 5 and Table 4, the accuracy of the GPR
state prediction is nearly identical between the standard and noise aware solutions. In fact,
the state estimates provided by the STND. and N.A. are often equal to within four digits
of each other as shown in Table 4. This is expected because, as shown in Equation (26),
qi approaches K(X , x∗) when Σx∗ is as small as it is in this work. The benefits of the
formulation presented in Section 6 will become evident in the uncertainty analysis. For
Cases A-D the accuracy of the method does not steadily increase as a function of training
data. In general, the output becomes more sensitive to disturbances in the inputs as the
training set becomes more populated and the regression becomes more “jagged”. This
cannot be the only explanation as with Case B, there is a significant drop in APE between
1000 and 1500 training points. In addition to the density of the training data, smoothness of
the regression—how closely the mean curve must approach to the training point—is also
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a function of the signal-to-noise ratio, σf /σn. In Case B, σf /σn for the models using 800
and 1000 training samples is over two orders of magnitude larger than with 1500 training
points. Figure 4 shows a slightly worse prediction for the Case B MV-GPR model defined
by 1500 training samples, compared to 800 and 1000 samples, given the general trend of
increasing accuracy given denser training sets. However, Figure 5 shows that this model is
particularly robust to noisy inputs. Therefore, smaller σf /σn seems to reduce regression
accuracy in the deterministic input case, but provide a model which is more robust to input
noise.
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Figure 4. Given the 5000 testing orbits, the point represents the median APE while the boxes enclose
the range of points between the 25th and the 75th quantiles of APE for each Cartesian state given
perfect RA and DEC measurements. The GPR methods are listed ind-GPR (blue) then MV-GPR
(black) and are ordered by number of training points—200, 400, 800, 1000, and 1500—listed in 100 s.
The Gauss–Gibbs results are labeled GG and shown in (red).
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Figure 5. The point represents the median APE while the boxes enclose the range of points between
the 25th and the 75th quantiles of APE for each Cartesian state given uncertain RA and DEC
measurements. The GPR methods are listed STND. (blue) Then, N.A. (black) and are ordered by
number of training points—200, 400, 800, 1000, and 1500—listed in 100s. The Gauss–Gibbs results are
labeled GG and shown in (red).

Table 4. Median APE for for most accurate model in each orbit case given noisy RA and
DEC measurements.

Case Model Training Level Median APE

Case A
STND. 400 0.0719 0.3647 0.4297 0.6460 0.3972 2.1586
N.A. 400 0.0719 0.3647 0.4299 0.6461 0.3973 2.1576
GG - 0.3623 1.7049 1.9628 2.4440 1.4774 1.9948

Case B
STND. 1500 0.3134 0.5451 0.6393 1.4412 0.5567 3.1896
N.A. 1500 0.3135 0.5452 0.6392 1.4416 0.5571 3.1896
GG - 2.0710 3.5750 4.0701 5.2170 3.3308 3.5605
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Table 4. Cont.

Case Model Training Level Median APE

Case C
STND. 400 0.3048 0.7412 0.7475 2.5160 0.7924 3.6713
N.A. 400 0.3049 0.7412 0.7476 2.5163 0.7926 3.6715
GG - 1.2056 2.8494 3.2037 4.6964 2.6248 2.7794

Case D
STND. 1000 0.2885 0.7497 0.7593 2.0085 0.8639 3.0448
N.A. 1000 0.2885 0.7498 0.7595 2.0082 0.8639 3.0442
GG - 1.1726 2.8190 3.2544 4.7066 2.7084 2.9684

Case E
STND. 1500 0.2687 0.7840 0.7691 2.0489 0.7661 3.2572
N.A. 1500 0.2687 0.7842 0.7691 2.0486 0.7662 3.2569
GG - 1.1912 2.9787 3.3680 4.8038 2.7215 3.1105

Case F
STND. 1500 0.3953 1.1690 1.1260 2.5241 1.1705 4.1178
N.A. 1500 0.3953 1.1691 1.1256 2.5240 1.1703 4.1165
GG - 1.1809 3.1280 3.4665 4.8219 2.7099 3.3952

Case G
STND. 400 0.4437 0.6128 0.6185 0.3103 4.5968 4.5697
N.A. 400 0.4438 0.6127 0.6185 0.3102 4.5963 4.5689
GG - 34.0713 41.3535 42.1487 23.1603 46.5761 49.4980

7.3. Effects of Orbit Shape

Now, the effects of the orbit regime within a given case will be investigated for MV-
GPR and compared to Gauss–Gibbs method. Case C with 1000 training points is chosen as
it shows an investigation of the whole orbit regime from LEO to high-MEO and provides
an accurate MV-GPR model for both perfect and noisy measurements.

Figure 6a is a scatter plot of the Gauss–Gibbs and MV-GPR state estimate’s APE
averaged across the Cartesian states versus the ground truth SMA and e, which define the
orbit shape. Examining the results for the Gauss–Gibbs method shown in the first row of
Figure 6, the mean Cartesian APE is shown to be relatively agnostic with respect to the
orbit shape given the perfect measurements. Similarly, the APEs for MV-GPR shown in the
bottom row of Figure 6a are essentially agnostic to the orbit shape with one caveat being
that accuracy degrades near the edges of the distribution. For example, investigating the
bottom right corner of Figure 6a, there is an obvious degradation in accuracy. The reasoning
for this is again related to the sparsity of data as shown in the accuracy investigation. There
are no training points with an SMA greater than 40,000 km nor eccentricities less than 0.05,
leading to the sparsity of neighboring training points to aid in the regression.

Shifting focus to the effects of input noise. Figure 6b examines the state estimate’s
MdAPEi. There is a noticeable trend towards a degradation in MdAPEi towards larger,
more circular orbits for Gauss–Gibbs method. This follows the similar trend for the scalar
triple product of the lines-of-sight

(
L̂T

1 (L̂2 × L̂3)
)

shown in Figure 6c. The presence of noise
together with nearly coplanar geometry—evident by the shrinking scalar triple product—
affect the Gauss–Gibbs solution. The MV-GPR study in row 2 of Figure 6b reflects a similar
conclusion to that addressed Figure 6a; accuracy is most greatly affected by sparsity of data
and not orbital geometry. Unlike the Gauss–Gibbs method, the GPR prediction accuracy
should not be directly related to the triple product because it is a regression based method.

7.4. Effects of Coplanarity

The classical Gauss–Gibbs method has been shown to be sensitive to coplanar geom-
etry, as shown in Section 2. Case G is used to further study the effects of coplanarity on
the Gauss–Gibbs and MV-GPR solutions. Figure 7a shows the scalar triple product of the
lines-of-sight and average of the Cartesian APE of both Gauss–Gibbs and MV-GPR versus
true Ω given perfect measurements. Figure 7b shows these values with the inclusion of
input noise, while Figure 7c examines the median scalar triple product and MdAPEi. As
shown in the second row of Figure 7a, there is a large degradation in accuracy around
Ω ≈ −2.5◦. This corresponds to the scalar triple product approaching zero, thus the the
lines-of-sight becoming linearly dependent. As shown in Figure 7b,c, this degradation
is exacerbated by the addition of noise leading to a magnitude increase in APE as far as
5◦ away from the singularity at Ω ≈ −2.5◦. Row 3 of Figure 7 reflects the same study
but for the MV-GPR method. Again, GPR should be agnostic with respect to coplanarity
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of the lines-of-sight. Therefore, a decline in accuracy near the singularity at Ω ≈ −2.5◦

is not present for MV-GPR. Comparing the second and third rows of Figure 7, the GPR
methods provide a better estimate with respect to MdAPEi by at least a order of magnitude
within ≈ 5◦ of the Ω leading to a coplanar singularity.

G
au

ss
–G

ib
bs

M
V

-G
PR

(a) (b) (c)

Figure 6. Effects of orbit shape on GPR predictions for Case C: (a) average of the Cartesian APE of
the GPR solution given perfect measurements, (b) the average MdAPEi given noisy measurements,
(c) the coplanarity of the lines-of-sight. Colorbars represent range for the 99% of points to increase
readability in the presence of outliers.

7.5. Bayesian Model Characterization

Unlike the deterministic Gauss–Gibbs IOD method, both ind-GPR and MV-GPR not
only provide a state prediction, but also estimate the model uncertainty. This uncertainty
characterization is investigated for Case G at training sample supports of 200 and 1000, as it
appears to be in the most likely use-case for GPR-based IOD methods and is representative
of all cases.

7.5.1. Perfect Measurements

The Mahalanobis distance from the true state to the predicted mean given the predicted
covariance is shown in Figure 8. This shows that the majority of Mahalanobis distances for
both GPR methods lie between 1 and 3. This is expected for accurate probability modeling
of Gaussian variables and means that, in general, the predicted Gaussian model is neither
over-confident nor too cautious. Comparing the two methods, ind-GPR carries a slight
advantage in the number of points which stay below a Mahalanobis distance of 3, signaling
a possible reduction in number of outliers.
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Figure 7. Effects of coplanarity on Gauss–Gibbs and MV-GPR IOD solutions. (a) scalar triple product
of the lines-of-sight and average of the Cartesian APE versus true Ω given perfect measurements.
(b) scalar triple product and average of the Cartesian APE versus true Ω given noisy measurements.
(c) median scalar triple product and average of the MdAPEi versus true Ω for each set of five random
samples of the 5000 test orbits.

(a) Trn. 200 (b) Trn. 1000

Figure 8. The Mahalanobis distance from the true state to the GPR-predicted mean given the GPR-
predicted covariance (a) 200 and (b) 1000 given perfect RA and DEC measurements.

Figure 9 shows the predicted standard deviation (σ) versus the error between the pre-
diction and the true Cartesian state. Note the threshold for the predicted σ of both methods.
This threshold is defined by the hyperparameter σn, which in a way acts as the minimal
uncertainty in the system, enforcing the fact that one cannot be more certain in predictions
of test points than that of the training data. The points for both ind-GPR and MV-GPR
follow along the 1-σ line reflecting the fact that higher errors are characterized by higher
variances. Furthermore, the majority of points lie below the 3-σ, which further reinforces
the characteristic that the model is not overly confident. The trend across training levels
is that the method is overly cautious for some of its more accurate uncertainty measures,
which is likely due in part to the noise term, σn, included in GPR model, which acts as
a minimum variance term. Therefore, forcing a small variance for ε in the optimization
process could help to reduce the over-cautious trend of the prediction covariance. However,
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recall this will likely reduce the model’s robustness to input noise as posited in the accuracy
study. As training levels increase, the GPR estimates appear to more accurately represent
that trend line, especially for the MV-GPR algorithm, because the model accuracy increases
as training levels increase.
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Figure 9. Predicted standard deviation versus the error between the predicted mean and the true
Cartesian state given perfect RA and DEC measurements.

Table 5 shows the percentage of points which lie within the predicted 1–σ and 3–σ
bounds estimated by each GPR model. Under a normal distribution, 68% of all estimates
will lie within 1–σ while 99.7% should lie within 3–σ bound. At both 200 and 1000 training
points, the ind-GPR is vastly over cautious in the variance estimate for r1, r2, r3, and v1
with the percentage of points within the 1–σ fluctuating in the high nineties. This highlights
the inflexibility of the ind-GPR to provide accurate uncertainty estimation for each output
dimension. In contrast, MV-GPR is able to provide more flexible variance estimation such
the percentage of points within a given σ bound more accurately reflect the true errors.

Table 5. Percentage of errors within σ–bound for ind- and MV-GPR given perfect input measurements.

Training Level Model σ–Bound r1 r2 r3 v1 v2 v3

200
ind-GPR 1− σ 98.1800 96.2200 96.9600 97.4600 66.4000 56.1600

3− σ 100.0000 99.9600 99.9800 100.0000 95.7600 91.8400

MV-GPR 1− σ 76.5000 73.1200 68.3800 75.0600 64.0600 62.1600
3− σ 96.1800 97.6800 96.5600 99.7000 93.0000 92.1800

1000
ind-GPR 1− σ 95.0800 91.4000 91.4400 85.7800 75.5200 68.5600

3− σ 99.7400 99.7400 99.7200 99.9000 95.6600 93.3000

MV-GPR 1− σ 78.9200 71.0000 69.8800 56.3000 84.1800 86.2000
3− σ 97.1200 97.8000 97.7200 96.6000 97.5800 97.9600

Figure 10 are plots of the true Cartesian state versus the GPR prediction error with
accompanying 2-σ bounds for a random 500 point sub-sample of the 5000 test orbits for
readability. Here, MV-GPR is able to better track the true error by encoding the covariance
between the components of the output state. By definition, the covariance estimate in the
ind-GPR algorithm is independent and identically distributed (IID) before re-normalization.
From Figure 10 and Table 5, we see that in this case the IID assumption leads to the
prediction being over-cautious in the r estimates. The covariance bounds for the elements
in r are much larger than the true error, in general. Therefore, the covariance associated
with the ind-GPR only provides a measure of confidence in the output as a whole rather
than providing accurate uncertainty information for each of the Cartesian dimensions.
MV-GPR tunes the covariance estimation for each output dimension, therefore it is able
to more accurately represent model uncertainty in each Cartesian dimension. Finally,
the average covariance bounds shrink around four-fold between the case of 200 and
1000 training samples therefore showcasing the effects of sparsity in training data.



Electronics 2022, 11, 588 19 of 25
M

V
-G

PR

Tr
n.

20
0

in
d-

G
PR

Tr
n.

20
0

M
V

-G
PR

Tr
n.

10
00

in
d-

G
PR

Tr
n.

10
00

Figure 10. Cartesian state versus the GPR output error with accompanying 3-σ bounds for a
500 point random sub-sample of the 5000 test orbits. Note the differing y-scale between
the training levels.

7.5.2. Uncertain Angular Measurements

Recall that the Bayesian model predicted from GPR only characterizes model uncer-
tainty as implemented in this work, therefore the predictive uncertainty characterization
will suffer greatly in the presence of input noise. Figure 11 shows the Mahalanobis distance
for both the standard MV-GPR formulation and the noise aware formulation presented in
Section 6. For the the standard MV-GPR method, the uncertainty is grossly underestimated
as the model and inference has zero uncertainty information from the test inputs. The
method presented in Section 6 is meant to address this and, as reflected in the second
row of Figure 11, does an excellent job at reducing the Mahalanobis distance to within
more reasonable bounds. There is a more pronounced effect on the 1000 point training set
because model uncertainty decreases as the number of training points increases. Therefore,
the effects of uncertain inputs become the dominating term.

(a) Trn. 200 (b) Trn. 1000

Figure 11. The Mahalanobis distance from the true state to the GPR-predicted mean given the GPR-
predicted covariance for Case G at training samples of (a) 200 and (b) 1000 given uncertain RA and
DEC measurements for the standard MV-GPR (blue) and the noise-aware MV-GPR (red).

Figure 12 shows the predicted σ versus the estimate error for each Cartesian state for
models with 200 training points in the first row and 1000 training points in the second. The
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ability of the noise aware MV-GPR method to accurately quantify the true error is evident.
At 200 training points, the model uncertainty is very much present, so the noise aware
estimation adds often less than an order of magnitude to the estimated σ. Since the model
uncertainty is reduced at increased training levels, the noise aware MV-GPR method has a
greater effect on predicted σ values. This results in an almost order of magnitude increase
between the standard and noise aware methods.

Tr
n.

20
0

Tr
n.

10
00

Figure 12. Predicted standard deviation versus the error between the predicted mean and the true
Cartesian state given uncertain angular measurements.

The percentage of points which lie within the GPR estimated 1–σ and 3–σ bounds are
shown in Table 6. Over 60% of points lie outside the 1–σ bounds predicted by standard
MV-GPR at 1000 training points. This is only marginally improved examining the standard
model at 200 training points, but that is largely attributed to the model error of the regres-
sion model accounting for a still significant portion of the true error. The percentage of
points which lie within σ bounds for the noise aware MV-GPR at 200 training points hovers
close to the 68% and 99.7 which define a perfect normal distribution. At 200 training points,
the noise aware model over-estimates the uncertainty contribution of the input noise as
evident from the high ninety percentile of points within the 1–σ.

Table 6. Percentage of errors within σ–bound for standard and noise aware MV-GPR.

Training Level Model σ–Bound r1 r2 r3 v1 v2 v3

200
STND. 1− σ 53.5880 43.6200 39.8320 50.3240 25.0120 24.1080

3− σ 86.0760 82.4120 78.9120 89.7000 57.8480 55.9160

N.A. 1− σ 76.7160 72.4440 69.2400 74.6800 66.7240 66.0720
3− σ 98.2960 99.2000 98.6640 99.7680 98.7160 98.4600

1000
STND. 1− σ 36.6560 24.4280 24.0440 22.3760 13.6880 14.6960

3− σ 68.1120 55.2760 54.4840 54.7680 35.0440 37.1280

N.A. 1− σ 98.3080 98.4440 98.5120 99.4320 92.1240 92.1600
3− σ 100.0000 100.0000 100.0000 100.0000 99.9960 99.9960

Figure 13 shows the true Cartesian elements versus the prediction error for a 500 point
sub-sample of the 25,000 random noisy measurements. At 200 training points, the difference
between the standard and noise aware MV-GPR inference implementations is limited as the
regression uncertainty is dominated by model uncertainty. The benefits of the noise aware
method is much more evident at 1000 training points. The standard inference method vastly
underestimates uncertainty for the majority of samples while the noise aware method better
captures the true error though being slightly over-cautious.
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Figure 13. Cartesian state versus the GPR output error with accompanying 3-σ bounds for a 500 point
random sub-sample of the 25,000 total samples. Note the different y-axis scales between the training
levels.

7.6. Qualitative Study

Now, with general trends established, it is important to perform a qualitative study
on the proposed techniques using exemplar orbits shown in Table 7. In this section, the
iterative Gauss–Gibbs method is utilized to better show the effect of GPR model bias.
Orbit A represents an orbit in a regime where both Gauss–Gibbs method and the proposed
GPR methods perform well. Orbit B represents a high MEO orbit in an orbit shape which
the Gauss–Gibbs method with iteration is shown to begin to degrade in accuracy. Orbit C
represents the failure case of a nearly coplanar orbit. In these studies, the true anomaly at the
first and third measurement time are separated 10◦ from θ2. For each orbit, 250 uncertain
RA and DEC measurements are generated using the noise model defined in Section 7.1.2
at pointing errors of 0.0005◦, 0.005◦, and 0.05◦. The GPR models for Orbits A and B are
generated using 1000 training samples from Case C in Table 1, while the model for Orbit C
is generated from Case G training data set at 1000 training samples.

Table 7. Exemplar orbits for qualitative study.

Orbit SMA e i (◦) Ω (◦) ω (◦) θ2 (◦)

Orbit A 13,000 0.2 40 300 17 55
Orbit B 36,000 0.5 40 300 17 55
Orbit C 13,000 0.2 40 3 17 55

Figure 14 shows the distribution of the 250 samples for Orbit A at varying noise levels
for both Gauss–Gibbs and noise aware MV-GPR methods. The levels of noise have very
similar effects in inflating the resulting distribution between both methods. The distribution
of the Gauss–Gibbs iterative method centers around the truth, while that of the GPR method
shows a model bias. This bias is especially prevalent for pointing errors of 0.0005◦ and
0.005◦ because the prediction uncertainty at these low levels of noise is still dominated by
the model error. Therefore, the GPR distributions are centered around their model bias, or
their prediction given perfect RA and DEC measurements. Again, this dominating model
uncertainty and bias is caused by the sparsity of training data associated with the large
orbit distribution of Case C.
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Figure 14. Qualitative study of Orbit A at various noise levels. The black points are MV-GPR and the
red are Gauss–Gibbs predictions,while the green point represents the truth.

The effects of geometry and noise in the IOD process begin to show in Figure 15, a
study of the distribution of the 250 samples for Orbit B at varying noise levels for both
Gauss–Gibbs and noise aware MV-GPR methods. Again, model uncertainty is the dominate
term for the MV-GPR model at a noise level of 0.0005◦. At a level of 0.005◦, the measurement
noise begins to degrade the Gauss–Gibbs prediction accuracy. Here, the GPR methods
provide a tighter distribution in all Cartesian states, though still centered around the model
bias. Finally at a noise level of 0.05◦, the measurement noise dominates. This leads to a
large distribution in the Gauss–Gibbs predictions while the MV-GPR solutions provide a
tighter-distribution, closer to the truth, for all Cartesian elements.
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Figure 15. Qualitative study of Orbit B at various noise levels. The black points are MV-GPR and the
red are Gauss–Gibbs predictions,while the green point represents the truth.

Figure 16 shows the distribution of the 250 samples for the nearly coplanar orbital
geometry case, Orbit C, at varying noise levels. Again, the near-coplanar lines-of-sight
measurements present for Orbit C lead to a complete degradation in the accuracy of Gauss–
Gibbs method. Even at the lowest noise levels, the MV-GPR solution provides a nearly order
of magnitude decrease in the distribution of the noisy predictions. At 0.005◦ measurement
errors, the Gauss–Gibbs prediction distribution is on the order of 1000 km in position and
hundreds of m/s in velocity. In stark contrast, the MV-GPR prediction distribution is on
the order of 10 km in position and tens of m/s, providing orders-of-magnitude increase
in accuracy. Finally, the Gauss–Gibbs method completely degrades at 0.05◦. MV-GPR’s
prediction for Orbit C provides accuracy comparable to Gauss–Gibbs method for Orbit A in
Figure 14, which represents an orbit where accurate Gauss–Gibbs predictions are expected.
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Figure 16. Qualitative study of Orbit C at various noise levels. The black points are MV-GPR and the
red are Gauss–Gibbs predictions,while the green point represents the truth.

8. Conclusions

In summary, this work examines the effects of a target’s orbit regime on the classical
Gauss–Gibbs angles-only IOD method and showcases the sensitivity of the Gauss–Gibbs
method to input noise and a coplanar observer-target geometry. Gauss–Gibbs method
shows sensitivity to varying levels input noise dependent on the orbit regime of the target.
Furthermore, the combination of input noise and nearly-coplanar observation geometry
leads to complete degradation of prediction accuracy for Gauss–Gibbs method. The GPR
methods implemented in this work provided a relatively accurate model less sensitive
to orbital geometry and observation uncertainty. Given perfect inputs, these machine
learning methods degrade in accuracy as training sets become more sparse. However,
that sparsity actually proves beneficial when high levels of noise are introduced to the
right ascension and declination because of the increased GPR mean-function smoothness.
The GPR methods not only provide a point solution, but also characterize the model
uncertainty—an added benefit over classical methods. In the case of perfect measurements,
the multivariate GPR (MV-GPR) method outperforms the multitask learning GPR method
(ind-GPR) in this uncertainty characterization due to the inclusion of output correlations.
Given noisy RA and DEC measurements, the noise aware inference method inflates the
predicted uncertainty to capture not only the model uncertainty, but also the induced
uncertainty from random inputs. This results in accurate variance inflation for MV-GPR
trained at 200 training points, while predicted variance is over-inflated at 1000 training
points for the test case presented in this work.

Given that specific orbital regimes are more frequently encountered in practice, it
could prove advantageous to tailor training data to reflect this distribution or even use
true observations. Furthermore, although observation frame manipulation may make the
GPR method agnostic to observation site longitude, the latitude and altitude will have a
significant effect on observer-target geometry. Addressing this observation site dependence
will prove beneficial. Proper characterization of the noise ε will likely prove extremely
beneficial for model robustness with respect to input noise given the GPR signal-to-noise
ratio affects on model sensitivity.
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The following abbreviations are used in this manuscript:

IOD Initial Orbit Determination
GG Gauss–Gibbs Orbit Determination Algorithm
GPR Gaussian Process Regression
ind-GPR Independent Gaussian Process Regression
MV-GPR Multivariate Gaussian Process Regression
SE Square Exponential Covariance Function
STND Standard Multivariate Gaussian Process Regression
NA Noise Aware Multivariate Gaussian Process Regression
SSA Space Situational Awareness
RA Right Ascension
DEC Declination
SE Square Exponential
ARD Automatic Relevance Determination
APE Absolute percent error
MdAPE Median absolute percent error
TOF Time-of-flight
IID independent and identically distributed

Appendix A

Here, we will give a brief explanation of the numerical difficulties with the method
presented in Section 6 and how they were addressed. First, Equation (28) can be rewritten
such that

cov
(

y∗|µx∗ , Σx∗

)
=

{
Σ̂ + tr

((
K(X ,X ) + σ2

nIN

)−1
[K(X , x∗)K(x∗,X )−Q]

)}
⊗ B + ΦTQΦ− (ΦTq)(ΦTq)T︸ ︷︷ ︸

covx∗ (Ef∗ [fx∗ |x∗ ])

, (A1)

where Σ̂ is defined in Equation (17). The numerical issues are most prevalent in the
covx∗(Ef∗ [fx∗ |x∗]) term. Due to the inverse calculation, Φ =

(
K(X ,X ) + σ2

nIN
)−1Y is

only accurate to a finite number of digits. Therefore, the term covx∗(Ef∗ [fx∗ |x∗]) appears to
suffer from catastrophic cancellation. This is corroborated by inspection by the author. As
the condition number of K(X ,X ) + σ2

nIN increased, the covx∗(Ef∗ [fx∗ |x∗]) term became
increasingly numerically sensitive as evident by producing a non-symmetric and/or a
non-positive semi-definite term. To alleviate this sensitivity, the eigenvalue decomposition
is performed on symmetric matrix Q such that Q = PΛPT , eigenvalues less than 5× 10−12

were zeroed, and the covx∗(Ef∗ [fx∗ |x∗]) is calculated such that

covx∗(Ef∗ [fx∗ |x∗]) =
(√

ΛPTΦ
)T(√

ΛPTΦ
)
− (ΦTq)(ΦTq)T . (A2)

This formulation significantly relieved the numerical difficulties and ensured symmet-
ric positive definite covariance estimates.
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