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Abstract
A generic Bayesian framework is presented to track lost-in-space noncooperative 
maneuvering satellites. The developed framework predicts the reachability set for 
a lost-in-space satellite given bounds on maneuver parameters such as maneuver 
time and maneuver magnitude. Reachability sets are represented as a desired order 
polynomial series as a function of maneuver parameters. Recent advances in non-
product quadrature methods are utilized to compute coefficients of this polynomial 
series in a computationally efficient manner. A major contribution of this work is to 
develop quadrature methods to generate samples for spherically uniform distribution 
for bounded magnitude maneuvers. Samples generated from this polynomial series 
are used for direct particle propagation in a traditional Bayesian filter rather than 
solving governing equations of motion for each sample point. An important com-
ponent of the developed framework is a search strategy which exploits the reach-
ability set calculations to task the sensor to increase the detection probability of the 
satellite. The samples generated from initial reachability sets are updated to system-
atically reduce the target search region based on actual detection of the target in a 
Bayesian framework. Numerical simulations are performed to show the efficacy of 
the developed ideas for tracking a lost-in-space satellite with the help of space based 
sensor. Performance of the proposed method varies widely based on factors such as 
the reachability set polynomial order, maneuver uncertainty bounds, sensor param-
eters (Field of view, measurement frequency, and detection probability), and initial 
conditions. For numerical experiments performed, the observer gained the custody 
of the maneuvering target in 100% and 96% of Monte Carlo (MC) simulations for the 
single maneuver and two maneuver cases, respectively.
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1 Introduction

Space has become an increasingly congested environment over the last few dec-
ades, leading to difficulties in operationally tracking and maintaining the space 
catalog to enable maximum space situational awareness. These problems are 
greatly exacerbated when considering that noncooperative active satellites can 
make unknown maneuvers which lead to issues with tracking and data associa-
tion. Maneuvering target tracking is a well-studied problem in the literature, with 
a history dating back to the 1970s [5, 11, 33]. The core objective of maneuvering 
target tracking is to extract meaningful information about the trajectory of the tar-
get based on observational data. In most tracking applications, this involves using 
real-time measurements to inform the dynamic model, as well as reconstruct or 
estimate the maneuver as it occurs. A comprehensive introduction to maneuver-
ing target tracking is presented in a six part paper series[24–29] which covers 
literature up to the early 2000s. Methods for maneuvering target tracking in this 
category include decision-based methods [6, 12, 33] and multiple-model meth-
ods [3, 4, 10]. A variety of target tracking methods and algorithms exist which 
vary widely by application. There is a diverse body of existing methods in the lit-
erature for tracking maneuvering targets using real-time measurements [6, 7, 32, 
37]; however, it is not within the scope of this paper to fully examine them. The 
authors emphasize here that all the literature cited above assume data-richness, 
such that measurements of the target are acquired during the target maneuver.

Methods using real-time measurements are useful in air and ground target 
tracking scenarios where it is reasonable to assume that measurements of the tar-
get are available throughout the entire trajectory. Unfortunately, due to the lim-
ited coverage and availability of sensor resources, satellite tracking applications 
frequently have large time delays between observations on the order of hours 
or days. In these data-sparse situations, unobserved maneuvers can drastically 
change the target trajectory to the point where a tasked sensor loses custody of 
the intended target entirely.

Detecting and reconstructing maneuvers in data-sparse situations has received 
some, albeit limited, coverage in the literature. Patera [36] addresses the problem 
of detecting maneuvers and other events (collisions, reentry, etc) in terms of sta-
tistically significant changes in orbital energy. An optimal control based method 
has also been developed to reconstruct finite maneuvers [19, 31, 39] connecting 
two measurements. The underlying technique for this method was first formulated 
in 1988 as the minimum model error method [34]. The minimum model error 
method treats the control as an unmodeled deviation from the dynamics, and min-
imizes this deviation such that the state estimate is statistically consistent with the 
observations. When applied to the satellite tracking problem, this method formu-
lates the maneuver reconstruction process as a two point boundary value problem 
under the assumption of a minimum fuel control policy. Whenever the optimal 
control profile rises above the level of system noise, it is assumed that a maneu-
ver has occurred. Although the minimum fuel maneuver is not necessarily a bad 
assumption, this method does not account for the many suboptimal trajectories 



1 3

The Journal of the Astronautical Sciences (2023) 70:9 Page 3 of 39 9

that can explain the same observational data. Furthermore, the orbital energy 
method as well as the minimum model error method make the assumption that 
the target can be observed after making a maneuver. The problem addressed in 
this work is fundamentally different. The problem currently considered is to use 
sensor data in conjunction with dynamical model for target motion and bounds on 
maneuver parameters to seek and locate a target satellite which has been lost due 
to an unknown maneuver.

In this respect, the objective of this paper is to determine a set of sensing param-
eters to locate the target given apriori knowledge about the bounds on maneuver 
parameters (e.g. magnitude and time). This apriori knowledge is exploited in con-
junction with dynamical model to compute a search area for the sensor at future 
times. The search area is defined by the reachability set of the target, and is synony-
mous with the target state pdf given by the mapping of target maneuver to state. The 
pdf represents all possible target states given a-priori knowledge on control bounds 
and measurement data, and the true target state will always lie within this set. If the 
tasked sensor is able to detect the target, then the measurement of the detected tar-
get is used to systematically reduce error in target state and maneuver estimates. In 
case of unsuccessful detection, the search area is updated and propagated to future 
times via reachability based methods. An important feature of this approach is that 
unsuccessful detection is also exploited to improve the future search and tracking 
of noncooperative satellites. The method presented in this paper creates a unified 
framework for search, detection, tracking, and maneuver estimation of a noncoop-
erative target.

An important component of this framework is to compute the reachability sets of 
the target. Generally speaking, a reachability set is the domain of all possible future 
states of a system given a constrained control effort. There is some disagreement in 
the literature over the specific definition of a reachability set; some analytical meth-
ods consider only the reachable outer surface or reachable envelope of states given 
a constrained control input. In the authors previous works [14], reachability sets are 
defined by the entire domain of reachable states (i.e. pdf) given uncertainty in initial 
state, model parameters, and control input. This is the definition that will be adopted 
throughout this paper.

An optimal control formulation of the reachable envelope is given analytically in 
[18]; however, this formulation doesn’t provide information about the region inside 
the reachable envelope. Since then, there have been many analytical investigations 
into the application of reachability sets to impulsively maneuvering spacecraft [43, 
45], and numerical objective map reachability analyses into proximity operations 
around asteroids  [42]. Traditionally, numerical reachability set computation for 
high-dimensional systems require tensor-product quadature methods to evaluate the 
multi-dimensional integrals involved. This can render the problem computationally 
intractable.

Recently, the higher order sensitivity matrix (HOSM) method [14, 15] has been 
developed to address this problem. The HOSM method is analogous to polyno-
mial chaos uncertainty propagation techniques, but utilizes higher order non-prod-
uct quadrature schemes such as the conjugate unscented transform (CUT) method 
to effectively compute the multidimensional integrals involved in reachability 
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set computation. Benefits of the non-product quadrature rules used in the HOSM 
method include higher accuracy than other popular methods like the unscented 
transform (UT) and sparse grid quadratures, and greatly reduced computational 
expense compared to alternative tensor product methods like Gauss–Hermite (GH). 
In this work, non-product quadrature rules are extended to the spherically uniform 
distribution for unknown maneuvers, and to mixed distributions for both unknown 
maneuver magnitude and maneuver time.

Once a target reachability set has been computed, a method for tasking sensors to 
search the set must be developed. A greedy in time maximum detection likelihood 
policy is implemented for this purpose. In practice, the maximum likelihood cost 
function for highly nonlinear dynamic and measurement models are evaluated using 
MC samples efficiently propagated via the reachability set model. The final compo-
nent to the proposed framework is the measurement update step. A key contribution 
of the proposed method is the utilization of measurements of the reachability set 
rather than the target itself to provide better information on the remaining possible 
target locations. If the tasked sensor does not observe the target, the detection likeli-
hood function is used to update the target search area. Conversely, if the target is 
located, an importance sampling with progressive correction (ISPC) procedure is 
used to accurately define the posterior.

The organization of the paper proceeds as follows. Section 2 provides a descrip-
tion of the data-sparse maneuvering target search method. Section 3 provides a sum-
mary of the higher order sensitivity matrix reachability set computation method, 
and discusses quadrature methods used in this problem. Sections 4 and 5 detail the 
sensor tasking and filtering/estimation components respectively. Section 6 provides 
numerical simulations and discussion of the applicability and limitations of this 
method, and Sect. 7 provides concluding remarks.

2  Problem Description

The objective of this problem is to locate a target that is able to make bounded 
unknown maneuvers at unknown times between observations. Given a sensor with 
limited field of view (FOV), the sensor parameters which provide the highest likeli-
hood of detecting the target must be determined. After tasking the sensors, observa-
tional data must then be used to update the search region and track the target. This 
section will define the dynamic system, stochastic inputs, and sensor model for the 
noncooperative maneuvering satellite tracking problem.

2.1  Generic Target‑Observer System

Assume a continuous-time dynamic system governing target and observer motion

(1)
ẋt = ft(xt, t) + gt(ut, t)

ẋob = fob(xob, t) + gob(uob, t)
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where xt is the (nt × 1) target state vector, ut is the (lt × 1) target control vector, ft is 
the target dynamic model, and gt is the target control model. The observer is simi-
larly assigned an (nob × 1) state xob , an (lob × 1) control uob , and dynamic and control 
models fob, gob . The target control vector is approximated by a series of M impulsive 
maneuvers ut,i and maneuver times ti with known bounds

where �(⋅) is the dirac delta function. As will be discussed in Sect. 3, the dimen-
sion of ut imposes severe computational limitations on reachability set evaluation. 
Therefore, the proposed methodology is better suited for impulsive maneuvers use 
cases than continuous low thrust maneuvers which requires many independent ran-
dom variables. The system flow for the target � t and the observer �ob can be written 
compactly as

where k is the discrete-time index of the current time step �
�
 . The combined system 

state is defined as the target state augmented by the observer state xT =
[
xT
t
xT
ob

]
 . 

Assume the sensor has field of view (FOV) constrained to a region defined by 
Cs(xk+1,�k+1) ≤ 0 where �k+1 is an (l × 1) vector of sensor parameters to be 
selected such that the target is detected. A piecewise detection likelihood function 
�d(xk+1,�k+1) can be defined with respect to the FOV constraints

such that the target has a probability ��
d
(xk+1,�k+1) ∈ [0, 1] of being detected within 

the FOV. Given known bounds on the target maneuvers ut,i , FOV constraints, and 
detection likelihood function, sensor parameters �k+1 which maximize some target 
detection metric Jd must be determined. It should be noted that the observer trajec-
tory is assumed to be known in this work, however, one can optimize the trajectory 
of the observer along with sensing parameters. This work will consider scenarios 
under the simplifying assumptions of a single-observer, single-target, and greedy in 
time tasking approach.1 The greedy in time assumption made here indicates that the 
sensor parameters �k+1 may be independently optimized at each timestep rather than 
optimizing a sequence of sensor parameters [�0 �1 … �k+1] for a finite time horizon. 
Under these simplifications, it is sufficient to define criteria Jd as the expectation 
value of the detection likelihood function �d(xk+1,�k+1)

(2)

ut ={ut,1, t1, ut,2, t2,…ut,M , tM}

ẋt =ft(xt, t) +

M∑
i=1

gt(ut, t)𝛿(t − ti)

(3)
xt,k+1 = � t(xt,0, ut, k + 1)

xob,k+1 = �ob(xob,0, uob, k + 1)

(4)𝜋d(xk+1,�k+1) =

{
𝜋�
d
(xk+1,�k+1) if Cs(xk+1,�k+1) < 0

0 otherwise

1 In a generic multi-target multi-sensor scenario, this problem can be posed as max{�} J
d
(X,�) where 

� is the set of all possible sensor network configurations and X is the set of all system states over some 
finite time horizon.
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Assuming selection of �k+1 provides a successful detection, the target measurement 
can be modeled by

where yk+1 is an (m × 1) measurement vector, h is the measurement model, and 
�k+1 ∈ N(0,Rk+1) is zero mean Gaussian measurement noise. This measurement 
can be used in a classical filtering sense to update the target state and maneuver esti-
mate. If there is not a successful detection, however, the target search region must 
be updated to inform future sensor tasking. The following section will outline the 
framework proposed to accomplish the objectives of this problem.

2.2  Overall Approach

The objective of this problem is to locate a target executing unknown maneuvers 
that has been lost by determining a set of sensor to search for the target. This prob-
lem is an extension of the classical filtering problem, where the sequence of maneu-
vers in time is unknown and observations are unavailable during the maneuver. It 
is assumed that the maneuvers have caused the target to deviate from its nominal 
trajectory to an extent where a limited FOV sensor cannot locate the target using 
traditional means.

The proposed method is a multipronged framework for determining the target 
search space, sensor tasking, and incorporation of measurement data for tracking/
estimation. A Taylor series-based approach is used to compute the target pdf, i.e. 
reachability set, as a function of bounded stochastic maneuvers. This reachability 
set defines the search region over which an observer is tasked to maximize the like-
lihood of detecting the target. A Bayesian particle filtering framework is used to 
update the target pdf such that unsuccessful sensor tasking measurements systemati-
cally reduce the remaining reachable target states. The proposed framework depicted 
in Fig. 1, can be split into three main components 

(5)max
�k+1

Jd = E[�d(xk+1,�k+1)] = ∫ �d(xk+1,�k+1)�(xk+1)dx

(6)yk+1 = h(xk+1) + �k+1

Fig. 1  Reachability set search diagram
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1. Reachability Set Computation
2. Sensor Tasking
3. Tacking/Estimation

A core premise of this method is that the reachability set of the target is synony-
mous with the target state pdf resulting from stochastic maneuvers mapped through 
the dynamic system. Assume the system input z is given by the known deterministic 
observer initial state xob,0 and control uob , in addition to the stochastic target initial state 
xt,0 and maneuver sequence ut,i, ti

where M is the total number of target maneuvers. Assume the initial target state is 
defined by random variable xt,0 with known pdf �(xt,0) . Traditionally, target maneu-
vers are represented by equivalent Gaussian process noise applied at each timestep; 
however, this does not intuitively make sense for the application currently consid-
ered. Instead, the maneuvers can be defined as impulsive zero-mean spherically 
uniform distributions up to maximum radius ΔVmax , denoted by ut,i ∈ Us(0,ΔVmax) , 
and maneuver times can be defined as linearly uniform between two time limits 
ti ∈ U(ta, tb) . Defining the maneuvers in this manner imposes assumptions only on 
the maximum maneuver magnitude, and considers any target attitude, maneuver 
magnitude, and maneuver time to be equally probable. Computing reachability sets 
using the statistics of this distribution will be discussed in Sect. 3.

For numerical accuracy, the stochastic part of the input vector is typically normal-
ized to a zero mean vector �

where S is a block-diagonal scaling matrix dependent on the pdf normalization of 
each component of z , and � is the augmented mean input vector. Table 1 summa-
rizes the various input types and their associated means and the scaling components, 
which comprise the diagonal blocks of S . Using the normalized input vector, the 
system flow � can be rewritten as

(7)z =

[
zt
zob

]
,

zT
t
=
[
xT
t,0

uT
t,1

t1 u
T
t,2

t2 ⋯ uT
t,M

tM

]

zT
ob

=
[
xT
ob,0

uT
ob

]

(8)� = S−1
(
zt − �

)

(9)xk = �(� , zob, k)

Table 1  Summary of input 
PDFs

Input Distribution type Mean � Scaling matrix S

Initial state x
0,t Gaussian N(�,�) x

∗
0,t

√
�

Maneuver ut,i Spherically Uni-
form Us(�,Rmax)

0 I ⋅ Rmax

Maneuver time tt,i Uniform U(a,b) a+b

2

b−a

2



 The Journal of the Astronautical Sciences (2023) 70:9

1 3

9 Page 8 of 39

The system flow represents the mapping of stochastic inputs with joint distribution 
�(�) onto the reachability set �(xk) . Note that the selection of inputs to include in � 
is left to the discretion of the user based upon the application considered. The first 
problem in the proposed framework is to efficiently compute the target search area 
defined by the reachability set �(xk).

3  Reachability Set Computation

Direct reachability set computation is notoriously expensive from a computational 
standpoint and involves the explicit evaluation of many MC samples to provide an 
accurate representation of the search space. This section outlines the basic concepts 
and equations of the HOSM, which enables very efficient polynomial approxima-
tion of a reachability set. Note that although the basic equations are provided here, a 
more detailed discussion can be found in Hall and Singla [15].

3.1  Taylor Series Expansion

Consider a d th order Taylor series expansion on Eq. (9)

where � is the normalized random input variable with known pdf. The objective of 
the HOSM method is to numerically compute a model analogous to the above Tay-
lor series expansion rather than explicitly evaluating partial derivatives of � . Group-
ing the constant partial derivatives into sensitivity matrices Ci and the � terms into 
sets of ith order basis functions �i , the expansion can be rewritten as,

These sensitivity matrices and basis functions can be grouped so that the target state 
is approximated by the compact polynomial model

where C is an (n × L) matrix of coefficients, and � is an (L × 1) vector of basis func-
tions. A least squares minimization procedure is applied to the above approximation 
and the coefficients can computed using the normal equations given by

(10)

� (d)(�) ≈ �(0)
⏟⏟⏟

Nominal Solution

+
��(0)

���1
��1

⏟⏞⏞⏟⏞⏞⏟
1stOrderSensitivity

+
1

2!

�2�(0)

���1���2
��1��2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2ndOrderSensitivity

…

+
1

d!

�d�(0)

���1���2 … ���d
��1��2 … ��d

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Higher Order Terms

, for �1, �2,… , �d = 1, 2,… , n

(11)�(�) ≈ C0 + C1�1 + C2�2 +⋯Cd�d

(12)x ≈ C�(�)
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where E[⋅] denotes the expectation value operator with respect to the input pdf �(�) . 
Note that if the basis functions �′

i
s are orthogonal with respect to the pdf �(�) , B 

becomes a diagonal matrix and the coefficients can be computed simply as

Additional details on the above procedure are provided in [15]. The problem now 
becomes a matter of accurately computing coefficients by evaluating the expecta-
tion integrals in (14). Expectation values in the denominator are purely polynomial, 
and are thus trivial to compute; however, the expectation values in the numerator 
are generic functions of the system flow. Quadrature methods can be used for this 
purpose.

All quadrature methods apply the same basic approach: approximate the function 
as a Taylor polynomial, and integrate that polynomial instead. The generic form of a 
quadrature rule is to approximate a polynomial integral as the finite sum of the func-
tion evaluated at specific points � (i) multiplied by weights w(i)

where the computational expense of the method is directly proportional to the num-
ber of points N required to evaluate. The key difference between various quadrature 
rules lies in how the points and weights are selected, and is intimately related to the 
Taylor series expansion as discussed in [13]. Substituting the Taylor series expan-
sion (10) into (15) provides a following set of equations known as the moment con-
straint equations (MCEs).

Extensive research has gone into devising quadrature rules which match the 
moments of Gaussian and uniform distributions; however, quadrature rules for the 

(13)
C = AB−1

Aj,k = E[xj�k(�)], Bk,l = E[�k(�)�l(�)]

(14)cj,k =
E[xj�k(�)]

E[�k(�)�k(�)]

(15)E[�j(�)] ≈

N∑
i=1

w(i)�j(�
(i))

(16)

E[1] =

N∑
i=1

w(i)

E[��1 ] =

N∑
i=1

w(i)� (i)
�1

E[��1��2 ] =

N∑
i=1

w(i)� (i)
�1
� (i)
�2

⋮

E[��1��2 … ��d ] =

N∑
i=1

w(i)� (i)
�1
� (i)
�2
… � (i)

�d
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spherically uniform unknown maneuver model used in this work is a relatively 
unexplored problem. The following section will derive the moments of the spheri-
cally uniform distribution and discuss how quadrature sets may be determined to 
enable reachability coefficient computation.

3.2  Spherically Uniform Quadrature

Unknown target maneuvers ut,i are characterized as zero-mean spherically uniform dis-
tributions with bounded magnitude, denoted by Us(0,ΔVmax) . To accurately compute 
the reachable space for such a maneuver, it is necessary to determine quadrature sets 
which match the MCEs up to a desired order d.

Consider the spherical coordinate system (�,�, r) given in Fig. 2 where � is the azi-
muth, � is the co-latitude, and r is the radius. The transformation between Cartesian 
coordinates (�1, �2, �3) and spherical coordinates is

Assume there exist random variables �,�, r such that the pdf of a unit sphere is uni-
formly distributed in Cartesian space �(�) = c . The constant c must be determined 
such that the pdf integrates to one.

where Ω is the support of a sphere, i.e. r < 1 . Firstly, notice that since the domain 
of the pdf is spherical, the bounds cannot be directly expressed in Cartesian space, 
therefore a transformation must be applied to map the differential volume element 
from Cartesian coordinates d� to spherical coordinates drd�d� . This transformation 

(17)

⎧⎪⎨⎪⎩

�1
�2
�3

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

r sin(�) cos(�)

r sin(�) sin(�)

r cos(�)

⎫
⎪⎬⎪⎭
,

⎧
⎪⎨⎪⎩

�

�

r

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

tan−1(
�2

�1
)

cos−1(
�3

r
)�

�2
1
+ �2

2
+ �2

3

⎫⎪⎬⎪⎭

(18)∫Ω

�(�)d� = 1

Fig. 2  Spherical coordinate 
system
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is given by the determinant of the Jacobian of Cartesian variables with respect to 
spherical variables.

Using the differential volume element transformation, the constant c can be found 
by directly integrating the expression

where the constant c can be thought of as normalizing the sphere to unit volume. 
The expectation value operator with respect to the uniform spherical distribution can 
now be defined as

Expression (21) can be used to analytically evaluate the moments of the uniform 
spherical distribution with respect to cartesian space. These moments are evalutated 
and listed in Table 2. Note that since the uniformly spherical distribution is symmet-
ric, the odd-order moments are all equal to zero.

There are many quadrature methods that one might consider to match the 
moments of the spherically uniform distribution (n = 3) . Perhaps the most well-
known class of quadrature method, Gaussian quadrature rules, requires only N 
points to compute up to d = 2N − 1 order moments for systems where n = 1 , 
which is minimal for one dimensional systems [41]. Unfortunately, higher dimen-
sional systems require a tensor product to be taken, which leads to exponential 
growth in the number of points. Furthermore, the Cartesian coordinates of the 
spherically uniform distribution are not statistically independent, i.e 

(19)
|J| =

||||||||

��1

�r

��1

��

��1

��
��2

�r

��2

��

��2

��
��3

�r

��3

��

��3

��

||||||||
= r2sin(�)

d� =|J|drd�d� = r2sin(�)drd�d�

(20)
1 = c∫

�

0 ∫
2�

0 ∫
1

0

r2sin(�)drd�d�

c =

[
∫

�

0 ∫
2�

0 ∫
1

0

r2sin(�)drd�d�

]−1
=

3

4�

(21)E[f (�)] =
3

4� ∫
�

0 ∫
2�

0 ∫
1

0

f (�)r2sin(�)drd�d�

Table 2  Moments of spherically 
uniform distribution

Moment Value Moment Value Moment Value

E[�2
i
] 1

5

E[�4
i
] 3

35

E[�2
i
�2
j
] 1

35

E[�6
i
] 1

21

E[�4
i
�2
j
] 1

105

E[�2
i
�2
j
�2
k
] 1

315

E[�8
i
] 1

33
E[�6

i
�2
j
] 1

231

E[�4
i
�4
j
] 1

385

E[�4
i
�2
j
�2
k
] 1

1155
E[�10

i
] 3

143
E[�8

i
�2
j
] 1

429

E[�6
i
�4
j
] 1

1001
E[�6

i
�2
j
�2
k
] 1

3003
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E[�2
i
�2
j
] ≠ E[�2

i
]E[�2

j
] . This causes the tensor product of 1D points to incorrectly 

match moments, and thus be invalid.
The celebrated Unscented Transform (UT) [20–22] is a popular alternative to 

tensor product methods which avoids expontential growth in N with increasing 
dimension, and maintains positive weights. The UT symmetrically places points 
on the principal axes of the input � to match up to 3rd order moments while incur-
ring only linear growth in N with dimension. Consider matching up to 3rd order 
moments of the uniform sphere using equally weighted w1 points placed at a dis-
tance of r1 on each principal axis. See Fig. 3 for a schematic of the UT for n = 3 . 
Since the points are symmetric, odd-order MCEs are automatically satisfied, and 
the even order equations are given by

which leads to the simple solution

This solution matches up to 3rd order moments of � using only 6 points. Further-
more, notice that r1 < 1 lies within the unit radius constraint for a spherical distribu-
tion and is therefore a valid solution. Support constraints � (i) ∈ Ω become very 
important when defining higher order quadrature sets. Notice that if a similar proce-
dure is attempted for 5th order moments, the cross-dimension expectation value 
E[�2

i
�2
j
] will never be replicated because at least one dimension will always have a 

zero component. Thus, an alternative method must be used.
The conjugate unscented transform (CUT) method is a higher order generaliza-

tion of the UT method specifically designed with the cross-moment problem in 
mind. The CUT method leverages special symmetric axes to directly construct 
points in nD space, circumventing the need for a tensor product. The details of 

(22)E[1] = 1 = 2nw1, E[�2
i
] =

1

5
= 2w1r

2
1

(23)w1 =
1

2n
=

1

6
, r1 =

√
nE[�2

i
] =

√
3

5

Fig. 3  Unscented transformation 
points for n=3
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the CUT method are discussed thoroughly in Adurthi et al [2]; however, this sec-
tion will outline application of CUT to the spherically uniform distribution.

Let us consider a set of points with distance r1 and weight w1 on the principal 
axes, and a set of points with distance r2 and weight w2 on the c(3) axis to saitsfy 5th 
order MCEs. The c(3) axis is a symmetric axis which yields the set of points {
Z(3)

}
= {[r2 r2 r2], [−r2 r2 r2], [r2 − r2 r2], …[−r2 − r2 − r2]} with all permu-

tations of negative and positive scaling parameters. Note that there are a total of 6 
points on the principal axes constrained such that r1 ≤ 1 and 8 points on the c(3) axis 
constrained such that r2 ≤ 1√

3
 . Recalling that the symmetry automatically satisfies 

the odd-order moments, the even-order MCEs for the uniform sphere are given by

Analytically, these equations can be reduced to expressions for w1, w2, r1

and a charateristic polynomial which is quadratic in r2
2

This equation leads to two positive solutions for the second scaling parameter

It is cruical now to notice the role of constraints. The only feasible value r2 ≤ 1√
3
 is 

given by r2 = 0.4190 . Unfortunately, when substituting this solution for r2 into the 
expression for r1 , a value of r1 = 1.2388 is found, which lies outside of the unit 
radius constraint. Thus, there are no feasible solutions using this set of points.

This example highlights one of the most glaring difficulties with the CUT 
method. There is no guarantee that a selected set of CUT axes will satisfy the MCEs 
and support constraints, so selecting the axes is often a guess and check procedure. 
For example, consider adding a single central point � (0) = [0, 0, 0] with weight w0 to 
previously examined set. The only MCE that is influenced by this change is

which yields the modified characteristic equation

(24)

E[1] = 1 =6w1 + 8w2

E[�2
i
] =

1

5
=2w1r

2
1
+ 8w2r

2
2

E[�4
i
] =

3

35
=2w1r

4
1
+ 8w2r

4
2

E[�2
i
�2
j
] =

1

35
=8w2r

4
2

(25)w1 =
1

35r4
1

, w2 =
1

280r4
2

, r2
1
=

2r2
2

7r2
2
− 1

(26)r4
2
−

42

77
r2
2
+

5

77
= 0

(27)r2 =

��
3

11
+

2

77

√
14,

�
3

11
−

2

77

√
14

�
≈ [0.6082, 0.4190]

(28)E[1] = 1 = w0 + 6w1 + 8w2
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with solution

Further analysis of this solution, shows that real solutions only exist for w0 ≤ 4

25
 ; 

however, selection of the central weight must still allow the unit radius constraint 
to be satisfied. Fig. 4 shows plots of r1 and r2 parameters vs. central weight w0 . The 
solid lines represent r1 , the dotted lines represent r2 , and red/blue lines represent 
coupled solutions (from either the plus or minus solution in (30)). It can be deter-
mined that the minimum central weight with a solution that satisfies the constraints 
is w0 = 0.0571.

If r1 is chosen to be fixed at the boundary value r1 = 1 , then the solution for the 
remaining parameters can be computed as r2 = 0.4472 , w0 = 0.1143 , w1 = 0.0286 , 
w2 = 0.0893 . This solution satisfies up to 5th order moments using only N = 15 
points. Finding an analytical solution can be a tedious process even for 5th order 
MCEs, and the complexity of extending analytical solutions to higher n and d can 
render analytical solutions impossible. Numerical solutions using CUT methodol-
ogy can be found; however, selecting axes which satisfy the MCEs and support 
constraints while providing minimum N is very difficult.

The CUT method can be used if only a single unknown maneuver with known 
time is used as the input, however, the generic input considered in this work (7) is 
mixed rather than solely spherically uniform. This introduces another problem. All 
of the previously discussed methods implicitly assume fully-symmetric input, which 
is problematic when constructing non-product quadrature sets for a mixed distribu-
tion. The following section will discuss the method used in this work to determine 
quadrature sets for mixed distributions to enable reachability set propagation.

(29)r4
2
+

42

70w0 + 77
r2
2
+

5

70w0 + 77
= 0

(30)r2 =

⎡⎢⎢⎣

�
21 +

√
14(4 − 25w0)

7(10w0 + 11)
,

�
21 −

√
14(4 − 25w0)

7(10w0 + 11)

⎤⎥⎥⎦

Fig. 4  CUT4 scaling parameters 
vs central weight
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3.3  Quadrature for Mixed Distributions

The generic input � considered in this paper consists of a mix of Gaussian, uniform, 
and spherically uniform distributions. The traditional way of handling mixed dis-
tributions is to take the tensor product of lower dimensional fully-symmetric sets. 
For example, consider the input � = [ut,1 ∈ Us(0, 1), t1 ∈ U(−1, 1)] for a known 
initial condition with unknown maneuver magnitude and maneuver time. Using 
the (15 × 3) 5th order spherically uniform CUT set found in the previous section 
X1 ∈ Us(0, 1) , and 5th order (3 × 1) uniform Gauss-Legendre points X2 ∈ U(−1, 1) , 
a tensor product set can be computed as

where Xtens is a (45 × 4) set which replicates up to 5th order moments. Although 
this method is valid, the tensor product is not minimal, so a non-product method 
is desired. To address this problem, a recently developed direct moment matching 
method known as designed quadrature (DQ) [23] is used.

A brief summary of the DQ algorithm is given here; however, a more detailed 
discussion can be found in [23]. The DQ algorithm is a recursive algorithm used to 
find a set of quadrature points and weights which satisfy a generic set of moments, 
then prunes out points to find a set with minimal number of points N. Recall that 
the computational expense of a quadrature method is directly proportional N. There-
fore, despite an increased initial cost of finding a minimal quadrature set via recur-
sive DQ, the efficiency of the resulting set for computing reachability sets is vastly 
improved.

The DQ algorithm does not impose any symmetric assumptions on � or require 
any explicit knowledge of �(�) . In fact, the only required information of � is the 
numeric value of the statistical moments of � , and any constraints associated with 
the support Ω . Since there are no symmetric conditions imposed on the quadrature 
set, odd-order moments must be included. Fortunately, moments are able to be eas-
ily computed analytically by separating the expectation values of independent mixed 
distibutions. Statistical moments for Gaussian and uniform distributions can be eas-
ily computed analytically and are provided in Tables 3 and 4 respectively.

(31)Xtens = X1 ⊗ X2

Table 3  Moments of Gaussian 
distribution
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For example, the cross-moments between spherically uniform dimension �1 and 
uniform dimension �4 can be computed as

Given the numeric moment values and support constraints of the inputs, the DQ 
method will solve for a set that satisfies the constraints and MCEs up to a desired 
tolerance. DQ is an iterative procedure which minimizes the MCEs and support con-
straint penalty for fixed N using Gauss-Newton method, then prunes out points and 
repeats until a valid set cannot be found with fewer points. The four major compo-
nents are 

1. Penalization Define the cost function R̃k to be the squared error in MCEs aug-
mented by support and weight constraint error penalties. This enables the cost 
function to be minimized using standard unconstrained minimization tools.

2. Gauss-Newton Iteration An iterative update step 

 is performed where d is a vector of decision variables, i.e. quadrature point 
coordinates and weights. The unconstrained optimization problem at the kth iter-
ation can be written 

 where J̃k+1 is the Jacobian of the cost function. The solution of this problem is 
found by solving for Δd with a classical least squares solution. 

3. Regularization The standard least squares solution is almost always poorly con-
ditioned due to the sparse structure of the Jacobian, so an additional Tikhanov 

(32)E[�2
1
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4
] = E[�2

1
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4
] =

1

5
⋅
1

3
=

1

15

(33)dk+1 = dk − Δd

(34)min
Δd

||R̃k+1 − J̃k+1Δd||22

(35)Δd =
(
J̃
T

k
J̃k

)−1

J̃
T

k
R̃k

Table 4  Moments of uniform 
distribution
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regularization procedure is required to get a reasonable solution. Regularization 
is done by including an additional term in the minimization 

 The solution to this modified least squares is found using singular value decom-
position and including a modifying filter factor to the computation of Δd . See 
[23] for additional details

4. Initialization The DQ method requires an initial guess which can greatly impact 
the speed of finding a solution. In fact, initializing the DQ algorithm with a 
quadrature set determined from one of the previously discussed methods can 
prove benefical in terms off computation time. For example, initializing the DQ 
algorithm with the (45 × 4) set Xtens , yields a final (21 × 4) set XDQ . Similar final 
results can be found via random initialization, however, initializing using a ten-
sor product set reduces runtime of the DQ algorithm because the initial guess 
satisfies the cost function and the algorithm immediately begins pruning points. 
This illustrates how directly solving for a mixed distribution quadrature set in 
nD using DQ can provide significant computational savings when compared to 
traditional means. Since the mixed input considered in this problem consists of 
normalized distributions, a set can be solved once offline and used to determine 
the reachable space of a target in real time. See Sect. 6 for a comparison of the 
accuracy of reachability sets computed using the quadrature sets Xtens and XDQ.

The DQ method implemented here is slightly modified from the algorithm specified 
in [23]. A two-tiered optimization loop is used such that the first loop uses a weak 
tolerance �1 to find a solution with N near the optimal N∗ , then minimizes the solu-
tion to a strict tolerance �2 . If the strict tolerance is used throughout the minimiza-
tion, the large majority of computational effort will go towards reducing error in a 
solution with N >> N∗ . It is much more effective to use a lower tolerance first, then 
enforce the desired tolerance. Now that a method for computing the reachability set 
has been presented, a systematic method for tasking sensors must be determined.

4  Sensor Tasking

Assume at this stage a polynomial model has been found via HOSM method which 
can efficiently propagate the target reachability set, i.e. state pdf �(x) , through the 
system dynamics. The question now becomes how to task sensors to search the 
reachability set. Recall the maximum detection likelihood objective posed in (5)

The observer for simulations in this work is assumed to be a space-based sensor with 
parameters � defined as attitude angles with associated attitude unit vector â . The 
detection likelihood function (4) can be defined in a number of ways. A simplistic 

(36)min
Δd

||R̃k+1 − J̃k+1Δd||22 + 𝜆||Δd||2
2

max
�

Jd = E[�d(x,�)] = ∫Ω

�d(x,�)�(x)dx
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detection likelihood function would simply be ��
d
(x,�) = 1 which implies a 100% 

probability of detecting targets within the FOV. Other options include geometric 
models which adjust the likelihood based on the position within the FOV, or physics 
based models which use basic principals to model the detection likelihood. Since 
the purpose of this paper is to provide a methodological framework rather than to 
provide realistic simulations, the detection likelihood function used in this paper is a 
toy geometric model with conical FOV constraints

where �∗ is the FOV half-angle, |�s| is a scale distance, � = xt − xob is the range 
vector, and � is the angle between attitude vector and range vector. Angle � can be 
computed by

A schematic of the geometry between the observer FOV, target, and detection likeli-
hood function is shown in Fig. 5. The problem now becomes how to evaluate the 
expected detection likelihood, i.e. cost function.

Due to the FOV constraints imposed on the detection probability function and 
the generic nonlinear pdf �(x) , evaluation via quadrature methods is not a practi-
cal option. Thus, a MC evaluation is necessary. Typically this would require the 
explicit propagation of random samples throughout the dynamics; however, the 
polynomial model computed in the previous section enables rapid and accurate 
approximation of many thousands of samples to represent �(x) . If N samples are 
randomly drawn from the normalized input vector � (i) ∈ �(�) and assigned equal 
weights w(i) =

1

N
 , then the output state is approximated using the reachability 

coefficients

and the reachability set can be approximated as a finite sum

(37)
��
d
(x,�) =

(
1 −

(
�

�∗

)2
)
exp

[
−
|�|
|�s|

]

Cs(x,�) =�(x,�) − �∗

(38)𝛾(x,�) = cos−1
(
� ⋅ â

|�|
)

(39)x(i) ≈ C�(� (i))

Fig. 5  Observer geometry
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where �(⋅) is the dirac delta function. Substituting (40) into (5) yields the MC 
approximated cost function

In practice, the objective function is maximized by performing a grid search of � and 
selecting the attitude which maximizes Jd . Due to the axial symmetry of the conic 
FOV and detection probability, only two attitude angles are required to describe the 
observer attitude. Note that there is a tradeoff here between computational efficiency 
and the optimality of the grid search.

An adaptive grid is used to avoid unnecessary computational costs. The grid is 
defined at each timestep by

where � is the grid of angles, and �,� are the azimuth and colatitudes correspond-
ing to the reachability samples respectively. In this manner the minimum and maxi-
mum azimuth and colatitude angles of the current target reachability set are used 
to bound the grid search and set nodes in increments of the FOV half-angle rather 
than fully grid searching all possible angles. After the optimal sensor parameters are 
selected, a measurement is taken and must be used to update the reachability set.

Note that in a generic multi-target multi-sensor tasking problem, an information 
metric may be used select sensor parameters. An example of this is the mutual infor-
mation approach taken in Ref [1]. The following section discusses filtering measure-
ments and estimating the target state and maneuver sequence using a particle filter-
ing framework.

5  Filtering and Estimation

The traditional filtering problem involves fusion of target measurement data with 
propagated state uncertainty to most accurately describe the posterior target distri-
bution. In contrast, the problem considered here is to use propagated state uncer-
tainty to task sensors to detect the target. If the target is not detected, observations of 
vacant regions of the search area are used to update the search area at future times; 
however, if the target is detected, the objective is synonymous with the traditional 
filtering problem. Here, the prior and posterior update states will be denoted x− and 
x+ respectively.

(40)�(x) ≈

N∑
i=1

w(i)�(x(i) − x)

(41)max
�

Jd =

N∑
i=1

w(i)�d(x
(i),�)

(42)
�1 =[min(𝜃(x

(i))),min(𝜃(x(i))) + 𝛾∗,min(𝜃(x(i))) + 2𝛾∗,… ,max(𝜃(x(i)))]

�2 =[min(𝜙(x
(i))),min(𝜙(x(i))) + 𝛾∗,min(𝜙(x(i))) + 2𝛾∗,… ,max(𝜙(x(i)))]

� =�1 ⊗ �2
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In data-rich applications, linearization such as the Extended Kalman Filter (EKF) 
are frequently sufficient to approximate nonlinear systems. The state can often be 
approximated as Gaussian in these applications; however, linear assumptions quickly 
break down in data-sparse applications due to the large interval between measurements. 
As a result, a particle filtering framework will be used to consider full density estima-
tion of the target pdf. Particle filters are a subset of sequential Monte Carlo (SMC) 
techniques which are well suited for this purpose. SMC techniques are a popular class 
of methods which approximate a full pdf �(x) as an ensemble of discrete samples. A 
thorough introduction to SMC methods can be found in references [9, 38, 40]. Con-
sidering the MC ensemble representation of the prior given by (40), sensor parameters 
� computed via maximum likelihood procedure given in Sect. 4, a measurement ỹ is 
taken. The prior pdf �(x−) can be updated to the posterior pdf �(x+) using the process 
of Bayesian inference. Bayes rule can be written as

where 𝜋(ỹ|x−) is the measurement likelihood function. Notice that the denominator 
of Bayes rule is simply a normalization factor, so the update can instead be written 
as a proportionality

Substituting (40) into (44), the measurement update can be written as a point-wise 
weight update

where ŵ(i)+ is an intermediate weight proportional to the prior weight. Recognizing 
that the denominator of Bayes rule is given by 

∑
ŵ(i)+ , the posterior weights are 

given by

The prior samples are now shifted to the posterior samples � (i)+ = � (i)− and can be 
propagated to the next timestep.

The measurement likelihood function 𝜋(ỹ|x(i)−) plays an important role in the 
proposed search procedure and is closely related to the detection likelihood func-
tion. For simulation purposes, a random number is drawn on the interval [0, 1] and 
if it is less than the detection likelihood of the true target state �d(x∗t ,�) , the target 
is considered to have been located. If the target is detected, then the measurement 
likelihood is defined using zero mean Gaussian sensor noise N(0,R) associated with 
the measurement model (6)

(43)𝜋(x+) =
𝜋(x−)𝜋(ỹ|x−)

∫ 𝜋(x−)𝜋(ỹ|x−)dx−

(44)𝜋(x+) ∝ 𝜋(x−)𝜋(ỹ|x−)

(45)ŵ(i)+ ∝ w(i)−𝜋(ỹ|x(i)−)

(46)w(i)+ =
ŵ(i)+

∑N

i=1
ŵ(i)+

(47)𝜋(ỹ�x−) = 1

(2𝜋)m∕2
√�R�

exp

�
−(ỹ − h(x−))TR−1(ỹ − h(x−))

2

�
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however, if the target is not detected, the measurement likelihood is defined to be the 
compliment of the detection probability

In this manner, samples inside the observer FOV will have their weight reduced pro-
portional to the detection likelihood if the target is not detected by measurement ỹ.

Notice that any particle states with very low measurement likelihood 𝜋(ỹ|x(i)−) 
will have a posterior weight w(i)+ near zero. In this situation, the particle x(i)+ con-
tributes very little to the approximation of the posterior, and as the particle filter 
update is repeated over multiple timesteps, the weight becomes concentrated in 
very few or even a single particle. This phenomenon is known as sample impov-
erishment or particle degeneracy and leads to a poor approximation of the tar-
get pdf. Resampling is an effective way to alleviate this issue. Ref [8] provides a 
concise summary and comparison of several popular resampling algorithms. The 
systematic resampling algorithm will be used in this paper for its efficiency and 
easy implementation. Note that since the system is propagated using the HOSM 
method, the normalized input samples � (i) are redrawn from �(�+) rather than 
directly from �(x+) . Typically, a resampling condition is used to avoid costly 
resampling procedures at every timestep. Ref [30] characterizes this resampling 
condition using the Effective Sample Size (ESS) criterion

The resampling condition is to resample only when ESS is less than a specific 
threshold Nt . The threshold Nt = N∕2 is used in implementation of this paper.

Although resampling is an effective method for preventing particle degeneracy 
over multiple timesteps, if the prior distribution is very diffuse with respect to 
the likelihood function, problems with particle degeneracy may arise at a sin-
gle timestep. This is frequently the case in the current application when a target 
with a large reachability set is detected by an observer with low sensor noise. 
For example, if a sensor has a range mesurement with noise standard deviation 
on the order of meters, and the closest particle in the reachability set has a range 
on the order of kilometers from the measured range, then the closest particle is 
thousands of standard deviations away from the expected measurement. The like-
lihood of such a particle is numerically zero, and thus, all of the particle weights 
will be set to zero and the filter will become singular.

This phenomenon is well understood in particle filters, and several methods 
have been developed to alleviate this practical implementation issue. This paper 
uses the importance sampling with progressive correction (ISPC) technique out-
lined in Ref [35] to update the reachability set when the target is detected. The 
idea behind ISPC is to include an expansion factor �k in the likelihood function, 
and iteratively resample intermediate posterior distributions until the expansion 
factor converges to the true posterior. The modified likelihood function is given 
by

(48)𝜋(ỹ|x−) = 1 − 𝜋d(x
−,�)

(49)ESS =

(
N∑
i=1

(
w(i)

)2
)−1
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such that for 𝜆k > 1 the standard deviation of the likelihood function is artifically 
inflated. Ref[35] provides an adaptive choice for parameter �k given by

where �max is a tunable parameter which influences the size of the progressive cor-
rection steps.

The final step in the maneuvering satellite search procedure is to estimate the 
target state and maneuver sequence. In fact, the HOSM method framework unifies 
the estimation of the target state and maneuver sequence into the same proce-
dure. Since the samples in the maneuver space � (i) are mapped to samples in the 
state space x(i) by the polynomial approximation (39), estimates can be computed 
simultaneously using

Note that during the search phase, the point estimate of the target given above may 
be a poor estimate of the true target location due to the very diffuse target pdf. Typi-
cally, a point estimate of mean target state only becomes meaningful after the first 
target detection when the pdf contracts to the levels of sensor noise around the meas-
urement. Additionally, it is important to note that since measurements are taken in 
the x space, the reliability of maneuver estimates in the � space are highly dependent 
on the quality of the polynomial approximation (39). This will be discussed further 
in Sect. 6. The Bayesian particle filtering method can be summarized as following 

1. Initialize Particles and Quadrature Points: Randomly sample N reachability 
set particles from the normalized maneuver distribution: � (i)

rs
∈ �(�) and assign 

equal weights w(i) =
1

N
 , and initialize quadrature points computed via non-product 

quadrature method: � (i)
q

2. Propagate Directly propagate quadrature points: x(i)
q,k+1

= �(� (i)
q
, zob, k + 1) to next 

measurement at tk+1 . Use x(i)
q,k+1

 to evaluate polynomial model coefficients via (13). 
Propagate reachability samples to tk+1 using polynomial approximation: 
x
(i)

rs,k+1
≈ Ck+1�(�

(i)
rs
) . Since the quadrature points are designed to be minimal, 

approximating x(i)
rs,k+1

 in this manner can offer orders of magnitude of computa-
tional savings.

3. Determine Sensor Parameters Create a grid of sensor parameters � . For 
each parameter combination, evaluate the cost function (41) using reachability 
samples x(i)

rs,k+1
 and select the parameters which maximize detection likelihood 

�∗ = argmax Φ

[
Jd(x,�)

]

(50)𝜋�(ỹ�x−) = 1

(2𝜋)m∕2
√�R�

exp

�
−(ỹ − h(x−))TR−1(ỹ − h(x−))

2𝜆k

�

(51)𝜆k =
max1≤i≤N −(ỹ − h(x−))TR−1(ỹ − h(x−))

2 log(𝛿max)

(52)
[
E[x+]

E[�+]

]
=

N∑
i=1

w(i)+

[
C�(� (i)+)

� (i)+

]



1 3

The Journal of the Astronautical Sciences (2023) 70:9 Page 23 of 39 9

4. Reachability Set Update Update the reachability set particle weights using (45) 
and (46). If target is detected, use likelihood function (47), if target is not detected, 
use likelihood function (48).

5. Resample If the target is detected for the first time, resample using ISPC algo-
rithm, otherwise if resampling criterion ESS <

N

2
 is satisfied, resample � (i)

rs
 using 

systematic resampling algorithm.
6. Estimate State and Maneuver Compute the current target state and maneuver 

estimates using (52). If desired, covariance estimates can be computed as well. 
Keep in mind that estimate covariance will be very large if the reachability set is 
still being searched. Return to step 2.

The above particle filtering framework in conjunction with maximum detection 
likelihood sensor tasking and the HOSM method enables a feasible framework for 
propagating and searching the reachability set of a noncooperative target satellite. 
Figure 6 summarizes each component of the proposed method, and the following 
section will present numerical simulations and discuss results.

6  Numerical Results

This section validates the mixed-distribution quadrature method described in 
Sect. 3.3 used to propagate reachability sets, as well as provides simulation results 
for two examples of the full noncooperative satellite search method. The reachability 
set validation method provides a comparison of sets propagated using a tensor prod-
uct method and using the DQ method. The two simulation test cases are 1) a single 
maneuver case, and 2) a two maneuver case. The first test case studies the effect of 

1 2

3

Fig. 6  Noncooperative satellite search method
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different order polynomial approximations on the overall performance of the devel-
oped framework.

The quadrature method validation section, propagates the reachability set for a 
target initially in an inclined LEO orbit, whereas both test cases consider a target 
initially in a slightly eccentric and slightly inclined Geosynchronous Earth Orbit 
(GEO). Additional test cases of the full search method, including a LEO orbit case, 
can be found in [16, 17]. The model f(x, t) used for all results is the nonlinear J2-per-
turbed relative equations of motion defined in [44]. The equations of motion for the 
dynamic model are

where �i terms are angular velocity of the rotating frame, �i terms are the angu-
lar acceleration of the rotating frame, and �,� are constants related to the J2 accel-
eration. The coordinate frame for this model is the relative RSW frame depicted in 
Fig. 9. The RSW coordinate frame is defined by R̂ in the radial direction, Ŝ in the 
in-track direction and Ŵ in the orbit normal direction. The origin of the RSW frame 
is located at the nominal orbit of the target at t0 . The following section will provide 
a comparison of reachability sets computed with competing methods in the RSW 
frame with dynamic model f(x, t).

6.1  Comparison of Quadrature Methods

Consider the case of a single unknown maneuver magnitude and unknown maneu-
ver time, with input vector zt = [ut,1, t1] . Two quadrature sets which match up to 
5th order moments for this input were computed in Sect. 3.3. The first is a (45 × 4) 
matrix Xtens computed via tensor product of spherically uniform CUT points and 
uniform Gauss-Legendre points, and the second is a (21 × 4) matrix XDQ constructed 
via the DQ algorithm.

The target is initially in an inclined LEO orbit with orbital elements given 
in Table 5, and is assumed to make a maneuver bounded by a magnitude of 5m/s 
ut,1 ∈ Us(0, 5m∕s) and bounded maneuver time t1 ∈ U(0,P∕2) where P is the orbital 
period (P = 5309.6s).

Reachability set coefficents with respect to a second order polynomial basis are 
computed in intervals of 30 seconds throughout the first orbital period using each 
quadrature set Xtens and XDQ . 10,000 random Monte Carlo samples are then drawn 
from the input vector � (i)

mc
 and exactly integrated through the dynamic model to target 

states x(i)
mc,k

= �(� (i)
mc
, zob, k) in the same 30 second intervals. The error between the 

(53)

f(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ẋ

ẏ

ż

2ẏ𝜔z + x𝜔2
z
+ y𝛼z − z𝜔x𝜔z − r𝜂2 + 𝜁sis𝜃 + 𝜂2(r + x) + 𝜁sis𝜃

−2ẋ𝜔z + 2ż𝜔x − xk𝛼z + y(𝜔2
z
+ 𝜔2

x
) + z𝛼x + 𝜁sic𝜃 + 𝜂2y + 𝜁sic𝜃

−2ẏ𝜔x − x𝜔x𝜔z − y𝛼x + z𝜔2
x
+ 𝜁ci + 𝜂2z + 𝜁ci

⎫
⎪⎪⎪⎬⎪⎪⎪⎭
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exact MC sample evaluations and the polynomial approximation is computed for 
each quadrature method.

The norm of position and velocity errors, ||�r||2, ||�v||2 for each sample are com-
puted and the RMS error value is computed over all samples

The RMS error of position and velocity is plotted for each method vs. time in Fig. 7.
It is immediately obvious, that the errors for the DQ method and the tensor prod-

uct method are nearly identical throughout the entirety of the simulation. This result 
demonstrates, that although the non-product DQ method has computational savings 
of 53% compared to the product method ( N = 21 vs. N = 45 ), there is no loss in 
accuracy. This is due to the fact that the same order of MCEs were satisfied for both 
sets regardless of the number of points used.

Figure 8 shows a position scatter plot of all 10,000 MC samples x(i)
mc

 at the final 
timestep, and the colorbar denotes the distribution of position errors thorughout the 

(54)
�
(i)

tens,k
=x

(i)

mc,k
− Ctens,k�(�

(i)
mc
)

�
(i)

DQ,k
=x

(i)

mc,k
− CDQ,k�(�

(i)
mc
)

(55)rms(||�||2) =
√

1

10000

∑||�(i)||2

Table 5  LEO initial orbital 
elements

Orbital element Value

Semi-major axis 6578.1 (km)
Eccentricity 0
Inclination 45

◦

Right ascension of ascending node 0
◦

Argument of periapse 0
◦

True anomaly 0
◦

Fig. 7  Approximation errors for reachability sets computed via tensor product and DQ methods
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reachability set. Although this error analysis is only shown for a 2nd order basis, 
examples in [17] show that increasing the basis function order can significantly 
decrease the error in reachability set approximation. This fact is reflected in the fol-
lowing sections in the accuracy of target state and maneuver estimates for varying 
polynomial basis order. It has been demonstrated that the non-product DQ quadra-
ture method has equivalent accuracy to a tensor product method, with significantly 
improved efficiency. The following sections demonstrate these efficient non-product 
quadrature methods can be used to enable the noncooperative maneuvering satellite 
search method.

6.2  Search Method Test Cases

This section describes the simulation parameters for the noncooperative satellite 
search method test cases and provide numerical results and analysis of each. Both 
test cases consider the observer to be a space-based satellite with the same dynamic 

Fig. 8  Scatterplot of reachability set position errors

Fig. 9  RSW coordinate system
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equations of motion as the target. The observer is prescribed range |�| , range-rate 
|�̇�| , azimuth �̂�1 , and colatitude �̂�2 measurements given by

where all relative position and velocity coordinates are given in the RSW frame. The 
sensor parameters � = [�1 �2]

T specify the observer attitude, which can be converted 
into a unit vector â given by

such that � is the angle between â and � and can be computed using (38).
The measurements are assigned Gaussian noise with covariance matrix 

R = diag([25m, 0.1m∕s, 0.1◦, 0.1◦]2) . The observer is assigned a FOV with half 
angle �∗ = 7.5◦ and a scale distance |�s| = 1000km for computing detection 
probability.

Note that the outcome of the simulation is dependent on the overall observability 
of the reachability set with respect to the observer detection zone. If the volume of 
the observer FOV is significantly less than the volume of the reachability set, then 
the observer may never be able to locate the target within the set; and conversely, 
if the observer FOV is larger than the reachable set, then the target will be detected 
within the first few timesteps. The parameters selected here correspond to a sensor 
with long range, but narrow FOV, and were chosen for moderate observability to 
demonstrate a range of outcomes.

Assume that half an orbital period elapses without observing the target such 
that maneuver time is defined as uniformly distributed between 0 and 12 hours, i.e. 
ti ∈ U(0hr, 12hr) . Measurements are taken every 5 minutes ( Δt = 300sec ) starting 
from t = 12hr through the end of the first orbital period tf = 24hr . Also assume 
it is known that the target has a maximum maneuver capability of 5m/s such that 
unknown maneuvers are spherically uniform distributions ut,i ∈ Us(0, 5m∕s) . The 
nominal target satellite orbit at t = 0 is given by the orbital parameters and corre-
sponding Earth Centered Inertial (ECI) coordinate state vector given in Tables 6 and 
7.

6.2.1  Test Case 1: Single Maneuver

This section will present the results for the single unknown maneuver test case. For 
this test case, the random target input vector is given by

The nominal observer orbit at the start of the search t = 12hr is given by the relative 
RSW coordinate state vector given in Table 8.

(56)h(x) =

⎡
⎢⎢⎢⎣

�𝝆�
��̇��
�̂�1
�̂�2

⎤
⎥⎥⎥⎦
=

⎧⎪⎪⎨⎪⎪⎩

�
𝜌2
1
+ 𝜌2

2
+ 𝜌2

3
𝝆⋅�̇�√

𝜌2
1
+𝜌2

2
+𝜌2

3

tan−1(
𝜌2

𝜌1
)

cos−1(𝜌3)

⎫⎪⎪⎬⎪⎪⎭

(57)â =
[
sin(𝜃2)cos(𝜃1) sin(𝜃2)sin(𝜃1) cos(𝜃1)

]T

(58)zt = [ut,1, t1], ut,1 ∈ Us(0, 5m∕s), t1 ∈ U(0, 12hr)
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Quadrature sets which satisfy moment constraint equations up to d = 4, 6, 8, 10 
order are computed and used to evaluate reachability set coefficients for polynomial 
models of D = 2, 3, 4, 5 order respectively. Refer to Sect. 3 for details on the computa-
tion of quadrature sets. The number of quadrature points and basis functions required 
for each model is given in Table 9. Once reachability set coefficients are computed, 
10,000 samples � (i) are drawn and evaluated using the polynomial model. The position 
of these samples in RSW coordinates at t = 12hr is shown in Fig. 10 for the 5th order 
polynomial model, where the colorbar depicts the maneuver time for a given sample.

Consider a single realization of the true target maneuver u∗
t,1

 and maneuver time 
t∗
1
 given by

Fig. 11 depicts the evolution of the target pdf in the initial target orbital plane ( ̂R, Ŝ ) 
using a 5th order polynomial basis in 1 hour intervals. A subset of 100 samples are 

(59)u∗
t,1

= [1.84,−2.54, 2.30]T (m∕s), t∗
1
= 5396(s)(+12hr)

Table 6  Initial target nominal 
orbital elements

Orbital element Value

Semi-major axis 42,241 (km)
Eccentricity 0.05
Inclination 2

◦

Right ascension of ascending node 0
◦

Argument of periapse 0
◦

True anomaly 0
◦

Table 7  Initial target nominal 
state (ECI coordinates)

ECI state vector Value

x 40,129 (km)
y 0 (km)
z 0 (km)
ẋ 0 (km/s)
ẏ 3.2275 (km/s)
ż 0.1127 (km/s)

Table 8  Observer state at 
t=12hr (RSW coordinates)

RSW state vector Value

x 200 (km)
y 0 (km)
z 0.5 (km)
ẋ 0 (m/s)
ẏ −22 (m/s)
ż 0 (m/s)
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randomly selected and plotted over the contours of Fig. 11. The initial observer state 
and true target maneuver were specifically selected for this test case to demonstrate 
a few key takeaways. First and foremost, notice that the true target state is captured 
within the contours of the pdf at all times. The pdf contours represent all possible 
states and maneuvers histories that could explain the measurements up to the cur-
rent time. Secondly, the geometry of the observer and the reachability set means that 
the target will not be in the observer’s FOV when initially searching the most likely 
region for the target (near the origin). This is done to demonstrate how the contours 
of the target pdf become more concentrated around the true target state as vacant 
regions of the reachability set are searched, and by 17 hours into the simulation the 
true target location is centered in the most probable region of the reachability set. 
The largest reduction in uncertainty during the search procedure is, by far, at the 
time of first detection td . Therefore, td , as well as state and maneuver estimate errors 
are important performance metrics. The detection time for the 5th order case is 18 
hours and 25mins.

The state and maneuver estimates at both the time of first detection td as well 
as the final simulation time tf  are computed for all polynomial models using (52). 
The target position and velocity estimate errors �r and �v respectively, are defined 
as

Fig. 10  Test Case 1: 5th order polynomial reachability set at t = 12 h

Table 9  Test Case 1: summary 
of quadrature sets for single 
maneuver case (n=4)

MCE order (d) Number of 
points (N)

Model basis 
order (D)

Number of 
basis functions 
(L)

4 16 2 15
6 47 3 35
8 110 4 70
10 244 5 126
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where r0 and v0 are used to normalize the errors by the initial Cartesian position and 
velocity. The maneuver estimate errors are given by

These errors are tabulated for the initial detection time as well as the final time 
tf = 24hrs in Tables  10 and 11, respectively. Generally speaking, the error values 
for both the target state and maneuver estimate appear to decrease as the order of the 
polynomial model increases. There are some subtle numerical reasons why the state 
and maneuver estimate errors for this particular realization do not strictly decrease 

(60)�r =
||E[rt] − r∗

t
||2

||r0||2 , �v =
||E[vt] − v∗

t
||2

||v0||2

(61)�u = ||E[ut,1] − u∗
t,1
||2, �t = |E[t1] − t∗

1
|

Fig. 11  Test Case 1: evolution of target PDF in orbital plane during search (5th order polynomial approx-
imation)

Table 10  Test Case 1: target 
maneuver and state estimate 
error at t

d

d �
u
 (m/s) �

t
 (min) �

r
�
v

2 1.563 67.94 2.591E−5 8.739E−4
3 3.461 139.88 1.459E−5 5.859E−4
4 1.979 87.75 4.929E−5 2.419E−4
5 0.642 23.22 6.632E−6 1.723E−4
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as polynomial order increases. One reason is that at tf  the state estimate is largely a 
function of the assumed measurement error, not the reachability set error. A reason 
that the estimate errors do not correlate entirely with polynomial order at detection 
time td may simply be random chance that certain order polynomials approximate 
the reachability set better at this particular input realization. In other words, on aver-
age over the entire reachability set higher order polynomials will approximate the 
set more accurately; however, there will always be locations in the set where a low 
order polynomial approximates the set better than a high order polynomial purely 
by chance. To this end, examining these results too closely will not provide a full 
picture, as only looking at a single realization of the true target maneuver doesn’t 
encompass the full domain of the reachability set.

Rather than considering a single realization of the true target maneuver, now 
consider the full simulation run 250 times with a new true target maneuver ran-
domly sampled for each simulation. The simulation is run using the same 250 
realizations for all polynomial models. Figure 12 shows histograms of the time 
of first detection td for varying polynomial model orders. From Fig. 12, it can be 
observed that target target is detected quickly in the majority of the simulations; 
however some target maneuvers cause the target to be undetected for longer. 

Table 11  Test Case 1: target 
maneuver and state estimate 
error at t

f

d �
u
(m/s) �

t
(min) �

r
�
v

2 1.562 17.45 8.972E−5 3.600E−4
3 3.605 142.14 2.331E−4 5.005E−4
4 0.228 1.67 2.167E−5 5.923E−5
5 0.154 6.72 2.621E−5 2.179E−5

Fig. 12  Test Case 1: detection time for 250 simulations and varying d 
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The simulations are run long enough that 100% of targets are detected, however 
increasing the polynomial order slightly reduces the time required to locate the 
target in these extreme cases. The target was detected in 95% of simulations by 
t = 20.17 hr for the model order D = 2 , t = 19.58 hr for D = 3 , t = 19.17 hr for 
D = 4 , and t = 18.58 hr for D = 5.

Figures 13, and 14 show histograms of log estimate error in maneuver magnitude 
�u , and maneuver time �t respectively for varying polynomial model orders. It can 
be readily seen that the maneuver magnitude and maneuver time estimate errors are 
reduced by increasing polynomial order. Since reduction of detection time is only 
very modestly improved by increased polynomial order, selection of the polynomial 

Fig. 13  Test Case 1: maneuver estimate error �
u
 for 250 simulations and varying d 

Fig. 14  Test Case 1: maneuver time estimate error �
t
 for 250 simulations and varying d 
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order to be used is dependent on the application considered. If the only requirement 
is to locate the target, perhaps a low order reachability set can be used to define the 
reachable space more efficiently; however, if maneuver reconstruction is required, 
higher accuracy reachability sets may be necessary to accurately estimate the 
maneuver. Table  12 summarizes the results of the 250 simulations by giving the 
mean error of the target state and maneuver estimates at the final time along with a 
1� plus or minus bounds.

6.2.2  Test Case 2: Two Maneuvers

This section will present the results for a case with two unknown maneuvers. For 
this test case, the random target input vector is given by

where maneuver ut,i and maneuver time ti distributions are defined identically to the 
those in test case 1. The main difference in this test case is the dimension of the 
input and the total ΔV  the target is allowed to make. Due to the curse of dimen-
sionality, the number of points required to evaluate the reachability coefficients 
greatly exceeds that required for a 4-D input. In fact, 6th and 8th order quadrature 
points were unable to be found directly in eight dimensional space using the DQ 
algorithm, so a tensor product of lower dimensional sets had to be used as described 
in Sect. 3.3. Table 13 lists the number of basis functions and number of quadrature 
points required to compute reachability sets for varying polynomial model order.

For brevity, only the results for the 4th order polynomial model will be shown. 
Figure 16 depicts the target reachability set in RSW coordinates using a 4th order 
polynomial model, where the colorbar indicates the average maneuver time. As is 
intuitively obvious, the larger total ΔV  available to the target makes the physical size 
of the two maneuver reachability set considerably larger than the single maneuver 

(62)zt = [ut,1, t1, ut,2, t2, ]

Table 12  Test Case 1: normalized target state and maneuver estimate error summary at t
f
 : mean error 

±1�

d �
u
(m/s) �

t
(min) �

r
�
v

2 2.1306 ± 1.463 133.99 ± 123.03 3.259E−4 ± 5.805E−4 5.562E−4 ± 6.6815E−4
3 1.0322 ± 1.481 62.00 ± 112.55 1.457E−4 ± 1.000E−3 2.080E−4 ± 6.815E−4
4 0.3787 ± 0.918 23.14 ± 69.07 6.909E−5 ± 4.052E−4 7.662E−5 ± 3.106E−4
5 0.4398 ± 1.208 28.02 ± 91.28 3.628E−5 ± 8.904E−5 7.056E−5 ± 1.886E−4

Table 13  Test Case 2: summary 
of quadrature sets for two 
maneuver case (n = 8)

MCE order 
(d)

Number of 
points (N)

Model basis 
order (D)

Number of 
basis functions 
(L)

4 106 2 45
6 1892 3 165
8 10,260 4 495



 The Journal of the Astronautical Sciences (2023) 70:9

1 3

9 Page 34 of 39

set shown in Fig.  10. The evolution of the pdf for a single realization of the two 
maneuvers is shown in Fig.  15. The detection time for this realization was 15hr 
45min.

The 4th order polynomial model is used to run 250 full simulations with a new 
true target maneuver sequence randomly sampled for each iteration. The error in 
estimated maneuver magnitude �u and maneuver time �t for both unknown maneu-
vers at the final simulation time is given in Fig. 17. It is apparent from Fig. 17 that 
the maneuver estimates have greater error than the respective 4th order models in 
the single maneuver test case (Figs. 13, 14). This is to be expected for several rea-
sons. Firstly, the physically larger size of the reachability set will cause errors in 
the polynomial approximation to increase, thereby increasing error in the mapping 

Fig. 15  Test Case 2: evolution of target PDF in orbital plane during search (4th order polynomial approx-
imation)

Fig. 16  Test Case 2: 4th order polynomial reachability set at t = 12 h
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between maneuvers and target states. Furthermore, the second maneuver creates the 
possibility for multiple maneuver sequences to acheive the same target trajectory. In 
this situation, it is impossible for the particle filter to disambiguate between possible 
maneuver histories and the filter may converge around an incorrect solution.

Despite the increased error in maneuver estimate and larger search region, using 
the proposed method the observer satellite was able to locate the target satellite in 
96% of the 250 simulations run (i.e. 10 unfound targets). There are several reasons 
why some targets were not detected in this simulation. Firstly, the parameters of the 
observation zone and detection probability were kept the same as the single maneu-
ver case, and due to the larger search region, portions of the reachability set further 
away from the observer were unable to be searched adequately. Secondly, the final 
simulation time was kept constant at 24hr so it may be the case that the observer 
simply didn’t have enough time to find the target in extreme cases.

Simulations where the target was not detected were removed from state and 
maneuver estimate calculations. The error in position �r and velocity �v estimate at 
the final time are computed using the normalization given by (60). The average state 
and maneuver estimate errors at the final simulation time plus or minus 1� is shown 
in Table 14. The average error in both maneuver and state estimates were higher for 
this case than the compareable 4th order estimate errors in test case 1. This is to be 
expected due to the higher dimensionality and larger physical size of the reachability 
set.

7  Conclusions

This paper presents a systematic search method for detecting a satellite that has 
been lost due to unknown maneuvers. A novel characterization of unknown maneu-
vers defines the target search space, and a maximum detection likelihood approach 
is used to task sensors. Sensor observations of vacant regions of the search space 
are used to reduce uncertainty in target state, and inform future sensor tasking. In 

Fig. 17  Test Case 2: maneuver estimate errors for 250 simulations
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fact, the reachability set represents the set of all possible states and maneuver his-
tories that can be explained by the measurments up to a given time. The true target 
state will always be a subset of this search space given that the bounds on input 
uncertainty are not violated. The proposed method provides a unified framework for 
search, detection, tracking, and maneuver estimation of a noncooperative target.

The applicability of the proposed method is largely dependent on the observabil-
ity of the problem. Sensors with large FOV relative to the target reachability set will 
easily locate the target, whereas a sensor with small FOV relative to a physically 
large reachable set may only have limited observability. Generalization of the single-
sensor single-target sensor tasking cases examined here to the generic sensor tasking 
problem as well as enabling active control of mobile sensors may prove beneficial 
for increasing observability of the reachability set.

Polynomial model order of the reachability set approximation is a flexible design 
parameter left to the discretion of the user. Higher order polynomial models offer 
better target state and maneuver estimation accuracy at the expense of increased 
computational cost. If the only objective is to locate the target, without regard for 
accurate maneuver reconstruction, using low order polynomials to model the reach-
able space can provide similar detection time performance. Additionally, increasing 
the assumed number of maneuvers the target imposes strongly prohibitive compu-
tational burdens on the proposed method. The current research work is focused on 
the computationally efficient extension of this approach for low-thrust continuous 
maneuvers.
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