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6.1. INTRODUCTION AND BACKGROUND

Volcanic‐ash plumes and dispersing clouds can be a 
hazard to both the aviation community and population 
centers downwind of  the volcano [Horwell and Baxter, 

2006; Prata and Tupper, 2009]. Operational organiza-
tions, such as Volcanic Ash Advisory Centers (VAACs), 
simulate the clouds’ future location for use in their 
decision‐support systems. Then volcanic ash advisories 
[VAA; see within ICAO, 2012] can be generated for the 
aviation industry. Also, fallout advisories often provided 
by local volcano observatories can provide advice on the 
potential impact to human health (see Horwell and 
Baxter [2006] for more on impact of  volcanic ash on 
human health). To forecast the ash plumes’ and clouds’ 
future position and concentration levels, volcanic‐ash 
transport and dispersion (VATD) models have been 
used. These VATD models are being used in either an 
operational setting to produce the cloud forecasts required 
for the VAACs’ VAA [Met Office, 2012; JMA, 2014] 
(Fig.  6.1a), or in a research mode [see Witham et  al., 
2007; Webley et al., 2009a,b, 2010; Folch et al., 2012] to 
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ABSTRACT

When forecasting the future location of volcanic‐ash clouds, uncertainties exist in the input parameters used in 
dispersion modeling and in the weather prediction data used for modeling the advection terms. Recent 
developments have shown that probabilistic modeling provides the tools to assess the variability in downwind 
ash concentrations. We show a probabilistic modeling approach where ensembles of forecasts are generated 
from a suite of simulations using a coupled one‐dimensional plume model and a Lagrangian dispersion model. 
This approach produces charts of the probability of ash‐cloud concentrations and mass loadings exceeding 
user‐defined thresholds. We focus on the initial plume uncertainties and discuss how uncertainties in numerical 
weather prediction data could also be applied within our approach. Our results show how, by assigning the 
initial likelihoods of input parameters, the probabilistic approach can produce mean ash concentrations and 
mass loadings as well as probabilities of breaching a defined threshold. We show how, given the variability in the 
inputs, the probabilistic modeling can be used to assess the confidence in the ash‐mass loadings. This is critical 
for real‐time volcanic‐hazard assessment and our approach illustrates how a new tool could be developed for 
those in decision support.



Figure 6.1  (a) London VAAC’s VAA produced during Eyjafjallajökull eruption on 14 April 2010; (b) additional 
concentration product from the same date at 06:00 UTC; and (c) the progression to concentration thresholds dur-
ing the Grimsvotn eruption on 25 May 2011.
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better understand the volcanic event and develop new 
processing algorithms and analysis tools for future vol-
canic‐hazard assessment.

The eruption of  Eyjafjallajökull volcano in 2010 
[Gudmundsson et  al., 2010, 2012] illustrated the uncer-
tainties that exist in performing volcanic‐ash plume 
and cloud modeling in a real‐time environment. The 
operational VAAC for the region produced, in addi-
tion to its standard VAA (Fig. 6.1a), a nonoperational 
product (Fig. 6.1b) that displayed the ash‐cloud con-
centrations that exceeded aviation engine tolerance lev-
els. These products were the result of  a deterministic 

model simulation from one set of  input parameters and 
used one deterministic numerical weather prediction 
(NWP) model. During the eruption of  Grimsvotn in 
2011 [Tesche et  al., 2012], the concentration forecast 
changed to display thresholds of  0–2 mg/m3, 2–4 mg/
m3, and > 4 mg/m3 (Fig. 6.1c). These were at the time 
deemed as acceptable by aircraft‐engine manufacturers 
so there would be no or minimal risk of  immediate 
damage to any aircraft [Guffanti and Tupper, 2014]. 
Uncertainties in plume‐height estimation, vertical 
plume shape, initial particle‐ or grain‐size distribution 
(PSD or GSD), event length, and mass eruption rate 

(c)

Modelled Ash Concentration from FL000 to FL2000 at
0600 UTC 24/05/2011

Issue time: 201105231800
This is a guidance product generated from model data and is supplemental to

the official VAAC London Volcanic Ash Advisory and Volcanic Ash Graphic products.
FIR boundaries are indicated for reference

200-2000 micrograms per cubic metre 2000-4000 micrograms per cubic metre >4000 micrograms per cubic metre

All concentrations are subject to a level of uncertainty relative to errors in the estimation of the eruption strength

Crown Copyright 2011. Source: Met Office

Figure 6.1  (Continued)
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indicate that the potential range of  the input parame-
ters can vary on scales greater than the sensitivity of 
the concentration thresholds. Thus, the research and 
operational communities [WMO, 2010a, 2010b] held 
discussions on the need to progress toward adding 
probabilistic ash‐cloud modeling to the deterministic 
forecasting that would place exceedance threshold 
estimates in proper context and allow better decision 
making.

Since the end of the International Civil Aviation 
Organization (ICAO) lead international volcanic‐ash 
task force (IVATF) in 2012 [ICAO, 2012], there has been 
a progression toward probabilistic VATD modeling envi-
ronments. These incorporate both the uncertainties in the 
model inputs [e.g., Bursik et al., 2012] and the potential 
variability in the NWP [e.g., Stefanescu et al., 2014; Vogel 
et  al., 2014]. Observational data from ground measure-
ments [Schneider and Hoblitt, 2013], airborne campaigns 
[Weber et  al., 2012], and satellite remote sensing data 
[Ellrod et al., 2003; Pavolonis et al., 2013] can then be used 
to constrain these approaches through inverse modeling 
[e.g., Madankan et al., 2014].

In this chapter, we present a new modeling approach 
that incorporates the uncertainties in the volcanic 
eruption initial conditions and the stochastic nature of 
the NWP data to generate a volcanic‐ash‐cloud forecast 
with associated probabilistic estimates in the location 
and four‐dimesional concentrations (x, y, z, and t). 
We  focus only on the input variability in this paper. 
We couple the Puff  VATD model [Searcy et al., 1998], 
to a one‐dimensional model for plume rise called BENT 
[Bursik, 2001], which we refer to as Puffin. This 
approach provides the uncertainty estimates in the 
initial conditions of  the eruption volcano. We have 
developed a sophisticated workflow that builds proba-
bilistic Puff  model simulations for a range of  inputs 
from the Puffin tool. We will provide, in this chapter, an 
overview of  the developed workflow focusing on one 
NWP dataset and illustrate some of  the output products 
available that can then be used to compare to any 
available observational data.

6.2. METHODOLOGY

6.2.1. Probabilistic Modeling Workflow

Our approach incorporates eruption and NWP vari-
ability and uncertainty together to provide a probabilistic 
estimate of  the ash‐cloud location and concentration 
downwind of  the volcano. Just as the Puff  VATD model 
is able to analyze past volcanic eruptions using reanaly-
sis [Webley et  al., 2012] and hindcast [Steensen et  al., 

2013] data, our tool is applicable for past eruptive event 
analysis as well as for real‐time model simulations for 
use in operational decision making. The workflow 
(Fig.  6.2) demonstrates how the source parameter 
uncertainty is applied to the BENT‐Puff  (Puffin) tool 
to build a set of  dispersion model simulations/ensem-
ble members. The mean and covariance of  this set of 
simulations are updated by assimilating any available 
observational data (i.e., a satellite data) to then pro-
duce a posterior mean and covariance of  the uncertain 
parameters (see Madankan et  al. [2014] for more 
details).With each available satellite dataset, a new 
source parameter input distribution would be gener-
ated. With subsequent iterations, the workflow reduces 
the uncertainties in the inputs and hence produces a 
simulated ash‐cloud product with higher confidence 
levels for the location and downwind concentrations. 
If  no satellite data are available, then simulations with 
the prior input parameters are used for the full model 
simulation.

In the initial phase of  the workflow, any input 
parameter for the BENT model can be defined with its 
associated variability. If  observational data are availa-
ble, such as eruption height from ground or space‐borne 
observations, then the initial weightings can be edited 
to reflect the recorded plume height. We currently chose 
four parameters: vent diameter, vent velocity, mean 
particle size (log scale), and standard deviation of  the 
size distribution (using a Gaussian shape centered on 
the mean particle size). For these four parameters, a set 
number of  simulations are defined that target the poten-
tial range of  each parameter with each simulation given 
an associated weight based on a minimization of  the 
moments in the probabilistic analysis. More details on 
the definition of  the methodology can be found in Patra 
et  al. [2013], Madankan et  al. [2014], and Stefanescu 
et al. [2014].

6.2.2. Near‐Real‐Time Processing Routines

In addition to the overall workflow design, we have 
built a set of  processing routines to complete the prob-
abilistic modeling in near real‐time (NRT; Fig.  6.3). 
Given the start time and date, the routines download 
data from the closest radiosonde to the volcano’s loca-
tion extracting vertical profiles of  temperature, wind 
speed, and relative humidity, at either 00 or 12 UTC 
depending on the start time for the simulations. These 
will be updated to use NWP to determine the atmos-
pheric conditions at the volcano. Next, the routine builds 
the template for the Puffin tool. For our current setup 
in  Fig.  6.3, we use four parameters to represent the 
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uncertainty in the eruption source input. We have cho-
sen the vent radius (m), vent velocity (m/s), log mean 
grain size (μm), and standard deviation of  log grain size. 
Given the local radiosonde and the range of  these four 
values along with the BENT model results, we end up 
with 161 different sets of  source parameter inputs for 
the Puff  VATD model. Each has a specific likelihood of 
occurrence based on the volcano’s physical characteris-
tics (vent size and velocity) and previous eruption style 
(mean ash grain size and standard deviation of  distribu-
tion). This can be adapted to any volcano of  interest. 
The BENT model within Puffin provides the maximum 
plume altitude (km), vertical plume shape, initial grain‐
size distribution for dispersal, and mass eruption rate 
(MER, kg/s). We specify the event length to convert the 
MER to total erupted mass (kg). Several Puffin simula-
tions can run in parallel to reduce the time to complete 
the full suite of  simulations. For example, with two Puff 

simulations running in parallel, each with a dedicated 
processing node and 1e5 (100,000) ash particles, the wall‐
clock time for the 161 simulations was 2.4 hr (approx. 
1.8 min per simulation pair) on a 23 CPU‐node server 
and using approximately 100 MB of  allocated memory.

The processing routines will run the Puffin tool for 
each of  the 161 simulations to generate the Puff  input 
file. As each parallel run completes, the Puff  particle 
location and ash‐concentration output files are gener-
ated and the routines moves down the list of  the 161 
simulation members. In the final part of  the NRT pro-
cessing routines, the outputs from the simulations are 
generated using the initial weightings defined in for the 
source parameters to generate a mean ash concentra-
tion. These results are sent to the second postprocessing 
routine to produce the probabilistic maps as GEOTIFF 
data, JPEG imagery, and Google Earth KML and 
KMZ files.

NCEP/NCAR
wind field

Workflow

CUT quadrature
points

Volcanic eruption

Source parameter
uncertainty

BENT-PUFF
ensemble

BENT: Eruption
plume model

PUFF: Ash transport
and dispersion model

NWP: Numerical
weather prediction

CUT: Conjugate
unscented transform

NCEP: National center for
environmental prediction

NCAR: National center for
atmospheric research

BENT-PUFF
ensemble

BENT-PUFF
ensemble

BENT-PUFF
ensemble

BENT-PUFF ensembles

Polynomial chaos
surrogate

Probabilistic
hazard map

Prior mean and
covariance

Minimum variance
estimation

Satellite image

Posterior mean and
covariance

Update source parameter
distribution using polynomial chaos

surrogate

Figure 6.2  Probabilistic modeling workflow, adapted from Madankan et al. [2014], using the Puff VATD model 
and coupled one‐dimensional plume rise model, BENT.



Figure 6.3  Real‐time processing routines from the probabilistic modeling of volcanic ash clouds. Results from these routines include mean 
ash mass loadings and ash concentrations at defined altitudes from all 161 ensemble members.
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6.3. PROBABILISTIC MODELING RESULTS

6.3.1. Cleveland Volcano, Alaska, USA:  
3 December 2014

Cleveland volcano was at elevated alert during early 
December 2014 [AVO, 2014] so we set up probabilistic 
model simulations to assess the capability of the system 
to develop timely results and to assess if  improvements 
were needed in our workflow for future eruptions. The 
volcano did not erupt but our example illustrates how the 
system could provide pre-event warnings to assist in VAA 
and VAG generation for aviation safety. The Puffin tool 
determined plume top heights to range from 12.2 km to 
18.95 km above sea level (ASL) and mean particle size to 
range from 2.3 to 3.7 μm. Figure 6.4 shows output from 
one Puff model simulation (i.e., Simulation Number 1). 
For this simulation, Puffin determined the plume top 
height to be 14.6 km ASL, the mean particle size to be 
3 μm, and the total mass to be 5 × 1011 kg. For this and all 
the Puff model simulations, we used the North American 
model (NAM) 216 grid at 45 km spatial resolution to 
provide the atmospheric data for the simulations.

Figure 6.4 displays the two outputs available from the 
Puff  VATD model. Being Lagrangian in form, the parti-
cle locations in four dimensions (x, y, z, and t), along with 
the ash concentrations (g/m3) can be generated per time 
step. The volcanic‐ash mass loadings (g/m2) are derived 
as total atmospheric column loadings from the ash‐
concentration gridded data. Figure  6.4 shows the ash 
locations and mass loadings at + 12 hr into the simula-
tion, or 12:00 UTC on 3 December 2014. There is 
evidence of fallout close to the volcano with a highest 
mass loading of 40.5 mg/m2.

The next step in our routine is to combine the 161 
model simulations together. Figures  6.5, 6.6, and 6.7 
document the averaged mass loadings and concentrations 
from all the simulation members along with the probabil-
ities associated with exceeding specific mass and concen-
tration thresholds. For the averaged results, the location 
of the cloud closely matches that from Simulation 
Number 1 (Fig. 6.4), while the concentrations at 2 km, 
10 km, and 16 km ASL illustrate the different footprints 
predicted by the Puff model as a result of the variations 
in wind patterns at these altitudes. The highest altitude 
portion, 16 km ASL, is centered in the westerly section of 
the cloud, and the lower altitude portions, below 10 km 
ASL, are focused in the easterly and southeasterly sec-
tions. Figure 6.5a documents the ash‐mass loading from 
the averaged results of the 161 simulations. Figure 6.5b 
shows that there is little variability in the 161 members 
and that the uncertainties in the model inputs led to a 
(spatially) well‐constrained set of simulations. Figure 6.5a 
and Figure  6.5b together illustrate that mass loadings 

greater than 0.1 mg/m2 correlate to the location of the 
higher probabilities of ash presence.

Figure  6.6a shows the mean concentrations from all 
161 members at 2 km ASL, while Figure  6.7a shows 
the corresponding probabilities of the concentration 
> 1 × 10−6 g/m3 (=1μg/m3) our chosen ash versus no‐ash 
boundary. Figure 6.7a produces a very conservative rep-
resentation of ash‐cloud location. The 2010 eruption of 
Eyjafjallajökull volcano [Gudmundsson et  al., 2010] 
showed the impact of how the ash‐cloud “edge” is defined 
in model data where the modeled cloud extent was much 
greater than seen in the satellite data. Our conservative 
no‐ash versus ash boundary at 1μg/m3 is a factor of 1000 
lower than the 1–4 mg/m3 proposed during the Eyja 
events. Satellite observations would be needed to com-
pare to our probability of occurrence to generate poste-
rior model inputs for an improved simulation and asses 
our chosen no‐ash versus ash boundary threshold.

Figures 6.6b and 6.7b show the mean ash concentra-
tions and probabilities of  ash occurrence ≥ 1 × 10−6 g/m3 
at 10 km ASL, while Figures 6.6c and 6.7c show the 
same parameters at 16 km ASL. The results at 16 km 
ASL show that some of  the simulations have a smaller 
spatial footprint. Figure 6.7c shows that the region of 
100% probability of  concentrations exceeding 1 × 10−6 
g/m3 is confined to the northwest segment of  the cloud 
footprint matching the higher concentrations from the 
161 members (Fig.  6.6c). Significantly reducing the 
concentration threshold to 1 × 10−12 g/m3 would result in 
the cloud footprints at 2 km, 10 km, and 16 km ASL 
being almost identical.

6.3.2. Zhupanovsky Volcano, Kamchatka, Russia: 
29 December 2014

GVP [2015] reported that Zhupanovsky volcano had 
continuing activity leading to an eruption with a plume 
top height of  6–9 km ASL on 29 December 2014. For 
our probabilistic modeling, we set a start time of 00:00 
UTC. The Puffin tool determined the plume heights 
ranged from 10.7 to 13.3 km ASL and the mean size 
from 2.3 to 3.7 μm across our 161 simulation members. 
Here we used the NCEP Global Forecast Systems (GFS) 
1.25° spatial resolution NWP data with the Puff  VATD 
model. Figure  6.8 illustrates the results for Simulation 
Number 1 from the Zhupanovsky event with the particle 
locations and ash‐mass loadings presented at + 12 hr 
after the event start. There is evidence of  ashfall close to 
the volcano in the particle location output while the 
highest mass loadings occur in the eastern extent of  the 
dispersing cloud. For this simulation, the plume top 
height was 11.2 km ASL with a mean particle size of 
3.2 μm and at +12 hr into the simulation the maximum 
mass loadings was 5.6 mg/m2.
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Figure 6.4  Cleveland Volcano Puff VATD model simulation for Probabilistic Simulation number 1. This is for start time on 3 December 2014 
at 00:00 UTC with the particle locations and ash mass loading (mg/m2) at + 12 hr after the eruption start, or 12:00 UTC.



Building an Uncertainty Modeling Framework for Real‐Time VATD  67

(a)

(b)
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Figure 6.5  Probabilistic modeling outputs at 12:00 UTC, + 12 hr after eruption, for Cleveland 3 December 2014 
model simulation. (a) Mean of the 161 simulation members showing ash mass loadings (mg/m2) and (b) probabili-
ties (%) of ash mass loading exceeding predefined threshold.



Figure 6.6  Probabilistic modeling outputs at 12:00 UTC, + 12 hr after eruption, for Cleveland 3 December 2014 
model simulation. Mean results from the 161 simulation members showing ash concentrations (mg/m3) at 2 (a), 
10 (b), and 16 (c) km ASL.
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6.3.2.1. Comparison of the Mean and Probabilities 
of All Simulations

Figure  6.8 illustrates a problem in using predefined 
grids for the ash‐concentration data. The particle loca-
tion map is defined by the maximum extent of the ash 
particles in the 24 hr period while the concentration grid 
is set prior to the simulation. Therefore, the cloud could 
disperse beyond the extensions of the concentration grid. 
Further developments are needed to our approach to 
define the concentration grid domain at the end of the 
simulation rather than as a predefined domain. Puff 
simulates the ash‐particle dispersal and generates a final 
concentration grid. We can predefine this grid with a 
fine spatial resolution and a large domain to cover the 
maximum possible extent of  the cloud dispersal in 24 hr. 
This would generate large (> 4 GB) gridded datasets 
that are not optimal in terms of  file size and spatial res-
olution for operational data analysis. Running the 
model simulations with a small number of  ash particles 
would allow us to evaluate the maximum extent of  the 
ash cloud to then optimally design the concentration 
grid to capture the full cloud dispersal and set the finest 

possible spatial resolution. However, to implement this 
for our model simulations is beyond the scope of  the 
research shown in this chapter. Figure  6.9 shows the 
results of  the probabilistic modeling for the 29 December 
simulations from Zhupanovsky volcano at + 12 hr after 
the start of  the event. Figure 6.9b shows the ash‐loading 
probabilities where concentrations exceeded 10−6 g/m3 
or 1 μg/m3. Further examples can be seen in Figures 6.10 
and 6.11 for ash concentrations and their probabilities 
at 2 km, 6 km, and 10 km ASL.

For Zhupanovsky volcano, we also illustrate the signifi-
cance of the minimum threshold chosen for the probabil-
istic analysis and how it could impact the spatial footprint 
applied in developing a VAA. Figure  6.12 shows the 
probabilities of measureable ash‐mass loadings for six 
different minimum exceedance thresholds for the con-
centration data at +12 hr into the simulations. None of 
the 161 members forecasted a concentration ≥ 100 mg/m3 
(Fig. 6.12a). Moving from exceedance thresholds ≥ 10 mg/
m3 (Fig.  6.12b) to ≥ 0.1 mg/m3 (Fig.  6.12e) there is evi-
dence of a growing cloud footprint and in the region 
of  100% probability of exceeding the threshold. As we 

(c)

Figure 6.6  (Continued)
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Figure 6.7  Probabilistic modeling outputs at 12:00 UTC, + 12 hr after eruption, for the Cleveland 3 December 2014 
model simulation. Probabilities (%) of ash concentration (mg/m3) exceedances at 2 (a), 10 (b), and 16 (c) km ASL.

(a)

(b)
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reduce the constraints on the minimum concentration 
threshold, the probability of a measureable ash‐mass 
loading increases.

By examining the probabilities of exceeding specific 
concentrations, there is evidence of significant differences 
at varying altitudes in the atmosphere. For the probabili-
ties at 2 km ASL, the spatial footprint is similar to that 
from the mass loadings (Fig. 6.12). Comparing the prob-
abilities at 2 km ASL (Fig. 6.13) to 10 km ASL (Fig. 6.14), 
significant differences occur. For a concentration thresh-
old of 100 mg/m3, there was no probability of exceedance 
in the gridded concentration at either 2 km ASL (Fig. 6.13a) 
or at 10 km ASL (Fig. 6.14a). By relaxing the concentra-
tion threshold by a factor of 10, Figure 6.13b–f for 2 km 
ASL and Figure  6.14b–f for 10  km ASL illustrate an 
increasing spatial extent to the simulated cloud occurs.

Our results show that the probability of  exceeding the 
same specific concentration threshold varies signifi-
cantly by altitude. Awareness of  this vertical variability 
is critical for those in real‐time hazard assessment where 
there is a need to produce maps at critical altitudes or flight 
levels for the aviation industry. Figures  6.15 and 6.16 
show how the spatial extent of  the probabilities varies 

with time for differing concentration thresholds. Here 
we fix the altitude to only compare concentration 
probabilities at 2 km ASL or the lowest vertical level 
of  the Puff  VATD model outputs. As the cloud grows 
in size, the spatial extent of  the probability of  the 
defined thresholds being exceeded also grows directly 
correlated to the level of  cloud dispersal as simulated 
by Puff.

6.3.2.2. Comparing Individual Members and the Mean 
of All Simulations

There is a need to compare individual simulation 
members to the mean of  all simulations as well as com-
pare the probabilistic results to any observational data. 
Then the probabilistic modeling approach can be ele-
vated to determine if  it provides more information on 
the potential variability in the ash‐cloud dispersion and 
is useful for operational hazard assessment. For the 
Zhupanovsky simulation, rather than examine all 161 
members and compare them one by one to each other 
and the mean results, we compared simulation members 
numbered 51 and 160. These two members represent the 
Puff  model runs with the maximum and minimum initial 

(c)

Figure 6.7  (Continued)
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Figure 6.9  Probabilistic modeling outputs at 12:00 UTC, + 12 hr after eruption, for Zhupanovsky 29 December 
2014 model simulation. (a) Mean of the 161 simulation members showing ash mass loadings (mg/m2) and 
(b) probabilities (%) of ash mass loading exceeding predefined threshold.



Figure 6.10  Probabilistic modeling outputs at 12:00 UTC, + 12 hr after eruption, for Zhupanovsky 29 December 
2014 model simulation. Mean results from the 161 simulation members showing ash concentrations (mg/m3) at 
2 (a), 10 (b), and 16 (c) km ASL.
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plume heights, 10.98 km ASL for Run Number 51 and 
13.63 km ASL for Run Number 160. Each model simula-
tions used the same initial vertical shape (Poisson distri-
bution to represent an umbrella‐shaped cloud) while the 
PSD was defined directly from the Puffin model. For 
Simulation Number 51, Figure 6.17a shows the Puff  par-
ticle locations in plan view along with longitudinal and 
latitudinal cross sections. Figure 6.17b shows the mass 
loadings with a polygon defining the spatial extent for 
all  locations where mass loadings exceed 1 mg/m2. 
Figure 6.17c shows the ash concentrations at 10–12 km 
ASL with its associated polygon for concentrations 
exceeding 1 mg/m3.

These can be directly compared to the corresponding 
results from Simulation Number 160 : Figure 6.17d for 
particle locations, Figure  6.17e for mass loadings, and 
Figure 6.17f for ash concentrations. The higher altitude 
initial plume for Simulation Number 160 has an impact 
on the footprint of the mass loadings and ash concentra-
tions. This is highlighted in Figure 6.18, which compares 
the polygons for mass loadings and 10–12 km ASL 
concentrations to the mean of the 161 simulations. 
Figure 6.18a, for the mass loadings, shows small differ-

ences in the total footprints (Number 51 at 44,500 km2, 
Number 160 at 47,500 km2, and the mean of all the runs 
at 54,000 km2). The impact of the higher initial plume 
height in Run Number 160 is seen to greater effect in the 
area of the ash concentrations at 10–12 km ASL (Number 
51 at 16,600 km2, Number 160 at 26,300 km2, and the 
mean of all the runs at 32,700 km2). Here, the Simulation 
Number 160 (Fig. 6.18b) extends farther to the northwest 
as compared with Simulation Number 51. As the cloud 
disperses, this displacement between the two runs grows 
with time.

6.4. DISCUSSION

Our results show how probabilistic modeling can be 
used to assess the probability of exceeding a ash concen-
tration and/or mass loading threshold in both space and 
time. The higher the probability, the more likely this 
threshold would be exceeded. This can provide a higher 
degree of confidence in the modeling results and be used 
to build a map of the area most at risk to concentrations/
mass loadings greater than the specific threshold. 
Figures 6.5 to 6.7 for Cleveland volcano and Figures 6.9 

(c)

Figure 6.10  (Continued)
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Figure 6.11  Probabilistic modeling outputs at 12:00 UTC, + 12 hr after eruption, for Zhupanovsky 29 December 2014 
model simulation. Probabilities (%) of ash concentration (mg/m3) exceedances at 2 (a), 10 (b), and 16 (c) km ASL.
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to 6.16 for Zhupanovsky volcano show outputs from our 
probabilistic modeling workflow. For real‐time assess-
ments of the ash‐cloud impact and likely location and 
concentration, the communication of our and any avail-
able probabilistic results to the end user becomes critical. 
Displaying the results in a common interface and ensur-
ing they are compatible with tools currently used to gen-
erate VAA and VAG should be a focus of researchers and 
operational organizations developing the probabilistic 
modeling capabilities.

For our contribution to the monograph, we focused 
on four eruption source inputs to the VATD modeling 
of  the cloud. Observational data are needed to constrain 
the results from any dispersion modeling and update 
prior knowledge of  the input parameters and associated 
uncertainties into posterior input data for updated 
VATD model simulations. Prior to an eruption, the 
likely maximum, minimum, and mean/median value for 
the modeling input parameters can be chosen. Several 
questions need to be evaluated as the workflow is 
developed. Does one choose a Gaussian distribution to 
sample the parameter values? How many sample points 

are required to fully represent the uncertainties and pro-
duce useful probabilistic modeling results without 
increasing the number of  required simulations for real‐
time applications?

We plan to build upon the approach shown here by 
adding in the NWP ensembles, following on from the 
work in Stefanescu et  al. [2014], to the real‐time pro-
gramming environment highlighted in Figure  6.3. 
Additionally, we will develop the real‐time routines to 
integrate with different VATD models in a plug‐and‐play 
approach as well as with a time‐varying version of the 
1‐D BENT model.

6.5. CONCLUSIONS

Eruptions like Eyjafjallajökull in 2010 [Gudmundsson 
et al., 2010] can change the landscape for both the scien-
tific and operational hazard‐assessment communities. 
At the time of  the 2010 events, there were a request and 
a need for a better understanding of  the uncertainties in 
the ash‐modeling simulations. Meetings such as those 
reported on in WMO [2010a, 2010b, 2013] brought 

(c)

Figure 6.11  (Continued)
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Figure 6.12  Probabilities (%) of volcanic ash mass loading (mg/m2) exceeding a range of specific thresholds in the simulations for Zhupanovsky 
volcano, 12:00 UTC 29 December 2014. (a) 100 mg/m3, (b) 10 mg/m3, (c) 1 mg/m3, (d) 0.1 mg/m3, (e) 0.01 mg/m3, and (f) 0.001 mg/m3 or 1 
μ mg/m3.
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Figure 6.13  Probabilities (%) of volcanic ash concentration (mg/m3) occurrence at 2 km ASL exceeding a range of specific thresholds in the 
simulations for Zhupanovsky volcano, 12:00 UTC 29 December 2014, when concentration threshold set at (a) 100 mg/m3, (b) 10 mg/m3, (c) 1 
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150

160

60

50

Zhupanovsky Volcano
Altitude level: 10000 m

Dec, 29 2014 12:00 UTC

Image is 2420 km E–W and 1540 km N–S
Probabilities of concentrations (%)

0. 25. 50. 75. 100.

Zhupanovsky Volcano
Altitude level: 10000 m

Dec, 29 2014 12:00 UTC

Image is 2420 km E–W and 1540 km N–S
Probabilities of concentrations (%)

0. 25. 50. 75. 100.

Zhupanovsky Volcano
Altitude level: 10000 m

Dec, 29 2014 12:00 UTC

Image is 2420 km E–W and 1540 km N–S
Probabilities of concentrations (%)

0. 25. 50. 75. 100.

Zhupanovsky Volcano
Altitude level: 10000 m

Dec, 29 2014 12:00 UTC

Image is 2420 km E–W and 1540 km N–S
Probabilities of concentrations (%)

0. 25. 50. 75. 100.

Zhupanovsky Volcano
Altitude level: 10000 m

Dec, 29 2014 12:00 UTC

Image is 2420 km E–W and 1540 km N–S
Probabilities of concentrations (%)

0. 25. 50. 75. 100.

Zhupanovsky Volcano
Altitude level: 10000 m

Dec, 29 2014 12:00 UTC

Image is 2420 km E–W and 1540 km N–S
Probabilities of concentrations (%)

0. 25. 50. 75. 100.

150

160

60

(d) (e) (f)

(a) (b) (c)

50

150
160

60

50

150
160

60

50

150
160

60

50

150
160

60

50

Figure 6.14  Probabilities (%) of volcanic ash concentration (mg/m3) occurrence at 10 km ASL exceeding a range of specific thresholds in the 
simulations for Zhupanovsky volcano, 12:00 UTC 29 December 2014, when concentration threshold set at (a) 100 mg/m3, (b) 10 mg/m3, 
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Figure 6.15  Probabilities (%) at 2 km ASL from the simulations for Zhupanovsky volcano, 29 December 2014, when concentrations exceeding at 1 
mg/m3, (a) 02:00, (b) 04:00, (c) 06:00, (d) 08:00, (e) 10:00, and (f) 12:00.
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Figure 6.16  Probabilities (%) at 2 km ASL from the simulations for Zhupanovsky volcano, 29 December 2014, when concentrations exceed-
ing at 0.001 mg/m3, (a) 02:00, (b) 04:00, (c) 06:00, (d) 08:00, (e) 10:00, and (f) 12:00.
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Figure 6.17  Puff volcanic ash cloud simulations #51 and #160, for Zhupanovsky volcano on 29 December 2014 at 12:00 UTC showing Puff 
particle locations ([a] for #51; [d] for #160), mass loadings ([b] for #51; [e] for #160), and ash concentrations from 10 to 12 km ASL ([c] for 
#51; [f] for #160).
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Figure 6.18  Polygons for simulation #51 and #160 for Zhupanovsky volcano on 29 December 2014 at 12:00 UTC. (a) Mass loadings for #51, 
yellow polygon, and #161, red polygon, as well as the mean from all simulation members, green polygon. (b) Ash concentrations at 10–12 
km ASL for #51, yellow polygon, and #161, red polygon as well as the mean from all simulation members, green polygon.
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together these two communities where a common theme 
emerged on the need to move from deterministic 
modeling to combined deterministic and probabilistic 
approach. As WMO [2013] states, certain eruption 
source parameters, such as plume height (km ASL) and 
eruption length (s), can be measured during the event 
while others, such as eruption rate (m3/s) and particle 
size distribution, can either be estimated from past 
eruptions or derived directly from the measured erup-
tion data.

We presented a workflow for probabilistic modeling 
where a 1‐D plume rise model, BENT [Bursik, 2001] has 
been coupled to a four‐dimensional volcanic‐ash trans-
port and dispersion (VATD) model. We focused on four 
BENT model parameters to build our probabilistic mod-
eling approach. We built a complete workflow that cou-
pled the input uncertainties from the 161 simulation 
members with the Puffin tool to develop downwind 
atmospheric ash concentrations and mass loadings with 
the associated probabilities of exceeding specific thresh-
olds. We have shown how, in using our system, maps of 
the mean ash‐mass loadings with time from our 161 
simulation members can be produced along with proba-
bilities of exceeding defined ash‐mass loadings and 
atmospheric ash‐concentration thresholds. Being able to 
quantify the likelihood of exceeding a specific concentra-
tion or mass loading threshold delivers a new tool 
for those in real‐time ash‐cloud hazard assessment to add 
to their advisories needed for aviation safety and human 
health impact.

However, the more critical question is how to commu-
nicate these probabilities to the end user and how to 
transition the research to operations? What does it mean 
to say that half  of  the 161 members breached the thresh-
old? How would a 95% probability of  exceeding a mass 
loading of  1 mg/m2 in a model simulation be used in a 
VAA by a VAAC forecaster? How would this informa-
tion be interpreted by the aviation community? Our 
modeling results could be compared and evaluated with 
available remote sensing data to provide additional tools 
as the VAAC produces its VAA and VAG. To fully 
develop these probabilistic tools so they can move 
directly from research to operations requires the research 
community to demonstrate how the probabilistic mode-
ling provides additional and useful information on the 
dispersing cloud that can then assist in the advisories 
produced by each VAAC.

Learning from the NWP community in how they use 
and communicate probabilities from their ensemble 
member NWP model simulations, such as Roebber et al. 
[2004], will be critical in how the probabilistic modeling 
approach is used in real‐time volcanic ash‐cloud hazard 
assessment. To develop a probabilistic approach into a 
real‐time system that can produce results in a timely 

manner is as important as the research itself  into the 
probabilistic analysis techniques and sensitivity of dis-
persion results. If  the computation takes too long or has 
not been developed to integrate with operational hazard 
assessment tools in the VAAC, then it will be very diffi-
cult for the operators to use the tool. Working directly 
with those in operations and supporting them on the inte-
gration of the tool as the probabilistic modeling system is 
developed means that the final product can be used from 
day one of operations.
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