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DYNAMIC MODELING OF SPACECRAFT WITH FLEXIBLE
MEMBRANE

Matthew Brownell*, Andrew J. Sinclair†, Puneet Singla‡

The main focus of this work is to derive a mathematical model for a
conceptual design of a large solar-powered spacecraft. The spacecraft is
considered to be a flexible membrane clamped within a rigid, rectangular
frame. The structure is motivated by a concept for capturing solar energy
in space and accurately directing it to required locations on the Earth’s
surface. Simulation results provide useful information for the vibrations
this type of spacecraft will experience in orbit. In subsequent work, we
wish to utilize this model to develop data-driven modeling techniques to
be used with real-time spacecraft input-output data.

INTRODUCTION

The accurate and timely supply of energy for the Department of Defense is paramount to
mission success. Space solar power is one concept to address this need via capturing solar
energy in space and accurately directing it to required locations on the Earth’s surface.
To achieve this mission, deployable structures with large apertures have been considered;
however, to accurately transmit power, precise knowledge of the dynamic shape of the
large flexible structure is required. Additionally, vibrations of the structure are of great
interest and must be minimized in order to maintain pointing accuracy.1 One concept
to measure the structural shape is to distribute senors over the surface that provide local
displacement or slope information. This local data can be used to estimate the shape of the
spacecraft and therefore apply corrections to the radio-frequency beam formation. Whereas
algebraic “curve fitting” may be used to find the amplitudes of a set of basis functions,
system identification finds a dynamical model solution for the input-output data collected
over time. The output at any given time is considered a function of the input signal, which
is a function of time. Implicitly, we hope the input-output data approximated is sufficiently
rich that the model will be accurate over a wide class of inputs and is useful for other
purposes such as controlling the system. The recent advances in machine learning such as
artificial neural network (ANN) can be used to find a global continuous map from system
input space to system output space; however, the performance of these algorithms decreases
drastically as the dimension of the system output vector increases. To make this point more
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clear, consider the problem of active control of a flexible space structure. Generally, the
system output vector consists of surface distortion measurements at various spatial points,
O(103), which are measured by sensors such as strain gauges, slope sensors, stereo vision
systems, LIDAR, etc. Therefore, if one seeks a dynamic continuous map between the
system output and input then the dimension of such a map can be as large as the number of
measurements, i.e., O(103). Conversely, the dimension of the hidden states, corresponding
to the true system, corresponds to the number of dynamic structural modes of interest,
which are typically less than 10. So, a system identification algorithm is desired that can
approximate the system output accurately while keeping the dimension of the dynamic map
as low as possible.

Flexible multibody systems have been a heavy research topic for decades. The work
of Meirovich and Stemple16 from the mid 90s diverges away from classical approxima-
tions such as the Rayleigh-Ritz Method and finite element method. They instead present
a mathematical formulation for distributed-parameter multibody systems which consists of
ordinary and partial differential equations of motion in terms of quasicoordinates.

In this paper, we will develop a dynamic model of the conceptual spacecraft via a La-
grangian method developed by Junkins and Kim2 with the help of mathematical methods
used by Dym and Shames.15 Junkins and Kim derived one-dimensional coupled rigid-
elastic equations-of-motion in their work. We extend this to two dimensions. These cou-
pled rigid-flexible equations of motion fully describe the motion and vibrational character-
istics of the spacecraft over time. We then preform basic transnational/rotational simula-
tions to gain insight about the dynamics of the structure. Lastly, we study how the dynamics
evolve for a case study of a sun-synchronous orbit. In future work, we will then utilize lin-
ear system identification tools such as the Eigensystem Realization Algorithm (ERA)8, 9

to find the subspace over which the dynamics can be explained while approximating the
input-output data collected from the distributed sensor arrays.

MATHEMATICAL BACKGROUND

The following section details how to obtain Lagrange’s equations of motion for a two-
dimensional coupled rigid-elastic system. The work is an extension of Junkins’ and Kim’s
work on one-dimensional coupled rigid-elastic systems2 and utilizes mathematical methods
from the work of Dym and Shames.15

We begin by spliting the Lagrangian into three terms,

L = LD +

∫
Ω

L̂dΩ + LB (1)

where Ω is the spatial domain occupied by the undeformed flexible body, LD is the discrete
portion of L, L̂ is the Lagrangian density of the flexible body, and LB is associated with
boundary motions.

We wish to obtain the governing equations and boundary conditions for a rigid-elastic
system with two spatial independent variables, x and y. The generalized rigid and elastic
coordinates in the Lagragian are given by q and w, respectively. Therefore, the elastic
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Figure 1: Conceptual Design of Spacecraft

deformation variable, w, is a function of x and y. As a result, both spatial derivatives
must be accounted for in the Lagrangian. The following derivation is done in the (x, y)
coordinate system due to its use in the next section; however, equations-of-motion and
boundary conditions can be derived in any coordinate system. The Lagrangian shown in
equation (1) now has the form

L = LD(q, q̇) +

∫ ∫
S

L̂
(
q, q̇, w, ẇ, wx, wxx, wy, wyy, wxy, wyx)dA

+LB(q, q̇, w, wx, wy, ẇ, ẇx, ẇy

)∣∣
Γ

(2)

where wx = ∂w
∂x

, wxx = ∂2w
∂x2 , wy = ∂w

∂y
, wyy = ∂2w

∂y2
, wxy = ∂2w

∂x∂y
, and wyx = ∂2w

∂y∂x
. The

variables S and Γ represent the the surface and boundary of the elastic domain, respectively.
The corresponding boundary Lagrangian, LB, has its w components evaluated along this
boundary. The nonconservative virtual work is given by,

δWnc = QT δq +

∫ ∫
S

f̂T δw dA+

∮
Γ

[
fT
1 δw + fT

2 δwx + fT
3 δwy

]
dl (3)

where Q is the generalized nonconservative force, f̂ is the nonconservative generalized
force density vector associated with w, and fT

1 − fT
3 are the nonconservative virtual works

that depend on the boundary forces and associated boundary virtual displacements. To
obtain the equations of motion, we wish to apply Hamilton’s Principle. Therefore, we
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carry out the variation of equation (2), add equation (3), and integrate over time to obtain:∫ t2

t1

(δL+ δWnc)dt =∫ t2

t1

{
∂LD

∂q
δq +

∂LD

∂q̇
δq̇ +

∂LB

∂q
δq +

∂LB

∂q̇
δq̇ +QT δq

+

∫ b2

b1

∫ a2

a1

[
∂L̂

∂q
δq +

∂L̂

∂q̇
δq̇ +

∂L̂

∂α
δα+

∂L̂

∂ẇ
δẇ + f̂T δw

]
dxdy

+
∂LB

∂β
δβ

∣∣∣∣
Γ

+
∂LB

∂β̇
δβ̇

∣∣∣∣
Γ

+

∮
Γ

[
fT
1 δw + fT

2 δwx + fT
3 δwy

]
dl

}
dt

(4)

where α = [w,wx, wxx, wy, wyy, wxy, wyx] and β = [w,wx, wy]. These variables are in-
troduced to add brevity to the equation. In order to simplify this equation, we will utilize
integration-by-parts and its two-dimensional counterpart derived from Gauss’ Theorem.15

As a result, all variation variables that are differentiated will disappear and more boundary
conditions will arise. The full simplification is omitted for brevity. Simplifying and setting
to zero yields,

∫ t2

t1

(δL+ δWnc)dt =

∫ t2

t1

[
Aδq +Bδw + C

]
dt = 0 (5)

where,

A =
∂LD

∂q
− d

dt

(
∂LD

∂q̇

)
+

∫ b2

b1

∫ a2

a1

[
∂L̂

∂q
− d

dt

(
∂L̂

∂q̇

)]
dxdy +

∂LB

∂q
− d

dt

(
∂LB

∂q̇

)
+QT

B =

∫ b2

b1

∫ a2

a1

[
∂L̂

∂w
− ∂

∂x

(
∂L̂

∂wx

)
− ∂

∂y

(
∂L̂

∂wy

)
+

∂2

∂x2

(
∂L̂

∂wxx

)
+

∂2

∂y2

(
∂L̂

∂wyy

)
+

∂

∂x

∂

∂y

(
∂L̂

∂wxy

)
+

∂

∂y

∂

∂x

(
∂L̂

∂wyx

)
− d

dt

(
∂L̂

∂ẇ

)
+ f̂T (x, y)

]
dxdy (6)

C =
∂LB

∂β
δβ

∣∣∣∣
Γ

− d

dt

(
∂LB

∂β̇
δβ

)∣∣∣∣
Γ

+

∮
Γ

[
fT
1 δw + fT

2 δwx + fT
3 δwy

]
dl

+

∮
Γ

[
∂L̂

∂wx

− ∂

∂x

(
∂L̂

wxx

)
− ∂

∂y

(
∂L̂

wyx

)]
δw dx

+

∮
Γ

[
∂L̂

∂wy

− ∂

∂y

(
∂L̂

wyy

)
− ∂

∂x

(
∂L̂

wxy

)]
δw dy

+

∮
Γ

∂L̂

∂wxx

δwx dx+

∮
Γ

∂L̂

∂wxy

δwy dx+

∮
Γ

∂L̂

∂wyx

δwx dy +

∮
Γ

∂L̂

∂wyy

δwy dy

4



In order for equation (5) to be satisfied, the three terms A, B, and C must be equal
to zero individually. This is a typical argument used in this class of variational calculus
problems. Utilizing equation (1), we can combine the LD, L̂, and LB terms in A to obtain
the standard Lagrange’s equation shown in equation (7) below. Setting B equal to zero
leads to the elastic domain equation (8).

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= QT (7)

d

dt

(
∂L̂

∂ẇ

)
− ∂L̂

∂w
+

∂

∂x

(
∂L̂

∂wx

)
+

∂

∂y

(
∂L̂

∂wy

)
− ∂2

∂x2

(
∂L̂

∂wxx

)
− ∂2

∂y2

(
∂L̂

∂wyy

)
− ∂

∂x

∂

∂y

(
∂L̂

∂wxy

)
− ∂

∂y

∂

∂x

(
∂L̂

∂wyx

)
= f̂T

(8)

In order to obtain the boundary conditions, one must set the many terms of C equal to zero.

We now have our set of equations of motion and boundary conditions for the two-
dimensional elastic variable, w. In the next section, we will apply these equations to derive
a model for the solar-powered spacecraft.

APPLICATION TO SPACECRAFT

Problem Setup

For this analysis, it will be assumed that the spacecraft consists of a rigid boundary
structure with a flexible membrane clamped within it. We also assume that the spacecraft
undergoes an external torque (τext), an external force (Fext), and the membrane undergoes
an external load (f̂ ).

Figure (2) below displays the spacecraft, reference frames, and position vectors. The
spacecraft is shown on the right with the center of mass symbol being only for the mass of
the rigid frame, not including the flexible membrane. Doing so helps simplify the defini-
tion of the position vectors since the center of mass of the frame will be fixed relative to the
body-fixed coordinates. The inertial reference frame {̂i, ĵ, k̂} is given in the lower left in
black, and the body-fixed reference frame {b̂1, b̂2, b̂3} is given on the spacecraft in red. The
two position vectors of interest are that of the rigid body’s center of mass rRB (shown in
green) and the position of any element on the membrane relative to the rigid body’s center
of mass rMem (shown in blue).

Inertial rRB written in body-fixed coordinates is written generally as

rRB = X b̂1 + Y b̂2 + Zb̂3 (9)

The position of any element of the membrane relative to inertial (rFlex) is written in
terms of rMem and rRB as
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Figure 2: Spacecraft Frames and Position Vectors

rFlex = rRB + rMem

rFlex = rRB + xb̂1 + yb̂2 + ηb̂3

= (X + x)b̂1 + (Y + y)b̂2 + (Z + η)b̂3

(10)

where {x,y,η} are the positions of any membrane element relative to the rigid body center
of mass in the {b̂1, b̂2, b̂3} reference frame, respectively. Note that what we are calling η is
analogous to w in the derivation of the previous section (the use of w for the displacement
is avoided here to prevent confusion with the angular velocity ω). For this derivation, only
the displacement of the membrane in the b̂3 direction, corresponding to η in equation (10),
will be considered. Lateral displacements in the b̂1 and b̂2 directions will be neglected.
This meaning that the membrane can only oscillate in the b̂3 direction.

The angular velocity for the body is written as,

ω = ω1b̂1 + ω2b̂2 + ω3b̂3 (11)

The time derivatives of the position vectors are then,

ṙRB = ν1b̂1 + ν2b̂2 + ν3b̂3 (12)
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ṙFlex = ν1b̂1 + ν2b̂2 + (ν3 + η̇)b̂3 + ω × (xb̂1 + yb̂2 + ηb̂3)

= (ν1 + ω2η − ω3y)b̂1 + (ν2 + ω3x− ω1η)b̂2

+ (ν3 + η̇ + ω1y − ω2x)b̂3

(13)

where ν1, ν2, and ν3 are quasi-velocities (i.e. inertial velocities written in body-fixed coor-
dinates).

It’s important to note here that, since we are using quasi-velocities for our rRB vector,
there is no need to apply the transport theorem when taking a time derivative; however,
since rMem is a part of the definition of the rFlex vector, and rMem is not defined to be
inertial, the transport theorem does have to be applied when taking the time derivative of
rFlex. We are also using quasi-velocities when it comes to the angular velocity since we
have not included any Euler angles.

Lagrangian

Now, with the velocities defined, one can write the kinetic and potential energies of the
system as,

T =
1

2
ωT Iω +

1

2
MRB(ṙRB · ṙRB) +

∫ b2

b1

∫ a2

a1

1

2
ρ(ṙFlex · ṙFlex)dxdy (14)

V =

∫ b2

b1

∫ a2

a1

1

2
P (∇η · ∇η)dxdy (15)

Where I is the inertia matrix (this derivation will assume that the body-fixed axes are
aligned with the principle inertia axes), MRB is the total mass of the rigid frame, ρ is
the density per unit area of the membrane, and P is the tension within the membrane.
Substituting equations (12) and (13) into T − V yields the following Lagrangian:

L =
1

2
ωT Iω +

1

2
MRB(ν

2
1 + ν2

2 + ν2
3) +

∫ b2

b1

∫ a2

a1

[
1

2
ρ

(
(ν1 + ω2η − ω3y)

2

+(ν2 + ω3x− ω1η)
2 + (ν3 + η̇ + ω1y − ω2x)

2

)
− 1

2
P (∇η · ∇η)

]
dxdy

(16)

Equations of Motion

From equation (16), it can be seen that our generalized coordinates, q, of our Lagrangian
are the translation velocity, ν, and the angular velocity, ω. These quantities are quasi-
velocities. As a result of using quasi-velocities in our Lagrangian formulation, we must
utilize the following modified form of equation (7),14

d

dt

(
∂L
∂νk

)
+ ω×

kj

∂L
∂νj

= Fk (17)

d

dt

(
∂L
∂ωk

)
+ ω×

kj

∂L
∂ωj

= Qk (18)
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Note that equations (17) and (18) are written in index notation. Applying equation (17)
to the Lagrangian in equation (16), simplifying with heavy matrix algebra, and then inter-
preting matrix multiplications as vector products yields the following vector equation,

MRB(r̈RB + ω × ṙRB) +

∫ b2

b1

∫ a2

a1

ρ(r̈Flex)dxdy = FExt (19)

Preforming the same process for equation (18) yields,

Iω̇ + ω × (Iω) +

∫ b2

b1

∫ a2

a1

ρ

{
rMem × (r̈Mem + r̈RB) + ṙMem × ṙRB

}
dxdy = τExt

(20)

Lastly, applying the same process with the elastic domain equation (8) yields,∫ b2

b1

∫ a2

a1

[ρ(r̈Flex) · b̂3 − P∇2η]dxdy =

∫ b2

b1

∫ a2

a1

f̂dxdy (21)

Setting the integrands equal,

ρ(r̈Flex) · b̂3 − P∇2η = f̂ (22)

Equation (22) is of the form of the well-known, clamped-boundary-condition membrane
equation: ρü − P∇2u = f̂ where u is the displacement of the membrane. Obtaining this
result makes intuitive sense because the membrane is clamped within the rigid boundary
structure.

Equations (19), (20), and (22), are the full set of equations of motion for the model
spacecraft.

Solving Membrane Partial Differential Equation

We approximate the displacement of the membrane, η, by assuming a separation of spa-
tial and time variables within the following summation,

η(x, y, t) =
N∑
i=1

ϕi(x, y)qi(t) (23)

where ϕi(x, y) are chosen basis functions, qi(t) are the corresponding modal amplitudes,
and N is the number of basis functions. For the rigid body equations (20) and (19), the
above equation can be directly substituted. For the partial differential, membrane equation
(22), we must apply a weighted residuals method. We choose to apply the Galerkin Method
of Weighted Residuals.
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Method of Weighted Residuals: Galerkin Method In general, consider a linear differen-
tial operator D acting on a function u to produce a function p,

D(u(x, y)) = p(x, y) (24)

We wish to approximate the function u using our assumed modes method,

u ∼= ũ =
N∑
i=1

ϕi(x, y)qi(t) (25)

When substituted into the differential, D, the result of the operations is not, in general,
p(x). Therefore, an error, or residual, will exist,

E(x, y) = R(x, y) = D(ũ(x, y))− p(x, y) ̸= 0 (26)

We wish to force the residual to zero in an average over the domain. That is,∫ b2

b1

∫ a2

a1

R(x, y)Widxdy = 0 i = 1, 2, ..., N (27)

There are many different methods for choosing the weightings, Wi. For our purposes, we
will be using the Galerkin method where the weightings are equal to the original basis
functions,

Wi =
∂ũ

∂qi
= ϕi(x, y) (28)

This leads to equation (22) becoming a system of N ordinary differential equations instead
of one partial differential equation. After applying equation (25) to equation (22), the
residual is found to be:

R = ρ[ν̇3 + (ϕiq̈i) + ω̇1y − ω̇2x− ν1ω2 + (−ω2
2 − ω2

1)(ϕiqi) (29)

+ω3ω2y + ω1ν2 + ω1ω3x]− P [ϕxxi
qi + ϕyyiqi]− f̂ (30)

Substituting the above residual into equation (27) yields,∫ b2

b1

∫ a2

a1

[
ρ[ν̇3 + (ϕiq̈i) + ω̇1y − ω̇2x− ν1ω2 + (−ω2

2 − ω2
1)(ϕiqi)

+ω3ω2y + ω1ν2 + ω1ω3x]− P [ϕxxi
qi + ϕyyiqi]− f̂

]
ϕjdxdy = 0 (31)

j = 1, 2, ..., N

Where the ϕiqi terms are the full summation defined in equation (25) and ϕj is the weighting
function for the jth assumed mode corresponding to the jth equation in the N equation
system of obtained via the Galerkin Method. We now have a system of ordinary differential
equations in time with variables ν1, ν2, ν3, ω1, ω2, ω3, and q. In the next section, we will
solve these equations over time for different external loadings.
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NUMERICAL SOLUTIONS OF EQUATIONS OF MOTION

We are now ready to simulate results for our model. For this problem, the modes of a
clamped-clamped membrane that is stationary will be used as the basis functions in the
assumed modes analysis. These modes are,

ϕij(x, y) = sin

[
iπ

a
(x− a

2
)

]
sin

[
jπ

b
(y − b

2
)

]
i, j = 1, 2, ..., N (32)

where a and b are the width and height of the rectangular membrane, respectively. The
work in the previous section had singular index notation, but our basis functions require
two indices. The notation is modified to,

ϕi(x, y) := ϕij(x, y)

ϕj(x, y) := ϕmn(x, y)

where all indices go from 1 to N .

For the following examples of output data, the following physical parameters were used:

N a b ρ P MRB I

4 10 m 10 m 5 kg
m2 200 N 100 kg

33.667 0 0
0 33.667 0
0 0 67.333

 kgm2

As a result, η is defined as:

η =sin

[
π(x− 5)

10

]
sin

[
π(y − 5)

10

]
q1(t)

+sin

[
π(x− 5)

10

]
sin

[
π(y − 5)

5

]
q2(t)

+sin

[
π(x− 5)

5

]
sin

[
π(y − 5)

10

]
q3(t)

+sin

[
π(x− 5)

5

]
sin

[
π(y − 5)

5

]
q4(t)

The following two subsections showcase results for the fully-coupled model derived
in this paper and a decoupled model. The fully-coupled model numerically integrates all
equations of motion simultaneously for a given external force/torque. The goal of the fully-
coupled results is to examine how the dynamics evolve in basic translation/rotation motion.
This will help to gain more of an intuitive understanding of the dynamics.

The decoupled model is utilized for simulating the membrane’s response in-orbit. The
decoupling allows the dynamics of the rigid body to affect the membrane, but not vice-
versa. This is necessary due to numerical issues that arise when attempting to integrate the
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fully-coupled model in-orbit. The decoupled model is described by the flowchart in Figure
(3). First, the position and translational velocity are obtained over time from a simple point-
mass Earth gravity model and the angular velocity is obtained from Euler’s rigid-body
rotation equations. Next, the angular velocities are utilized in the differential equations for
attitude quaternions so that the direction-cosine matrix (DCM) can be determined. With
this DCM, the inertial velocity in the body fix frame, ν, is calculated. Finally, the position,
ν, and ω are fed into the membrane dynamics to determine the modal amplitude over time.

Note that the same system parameters are used for both models.

Fully-Coupled Model Results

In Figure (4a), an external force of magnitude 0.001 N, only in the b̂3 direction, is applied
to the spacecraft for 10 seconds. There are no external torques or distributed loads applied.
It is important to note that, by definition, this force is applied evenly on the rigid frame,
not the membrane itself. The first mode of the membrane is excited due to this acceleration
and the modal amplitude has a sinusoidal response. This response is due to the inertia of
the spacecraft causing a ”sag” in the membrane as it begins to translate due to the external
force. As this is happening, the strain energy of the membrane creates an acceleration
that counters this sag until the membrane ”rebounds” and becomes flat again. This cycle
continues on as the spacecraft translates. The velocity in the b̂3 direction (ν3) is increasing
as expected, but with slight fluctuations. This is due to the aforementioned vibration of the
membrane.

In Figure (4b), a constant torque of 0.001 Nm is applied about the b̂1 and b̂2 axes. There
are no external forces or distributed loads applied. The rotational velocities ω1 and ω2 have
slightly nonlinear trends due to the vibration of the membrane as described from the results
of Figure (4a). Two modes were excited in this case and followed different sinusoidal
waves. No translational velocity occurred due to the specific mode shapes that were excited.
Modes (1,2) and (2,1) oscillate with an even amount of mass displaced relative to the b̂1-b̂2
plane. This meaning there is no net force acting on the satellite at any time during this
vibration. This is not true for the mode (1,1) that was induced in the results of Figure (4a).

In Figure (4c), a constant force of 0.001 N is applied in the b̂1 and b̂2 directions and a
constant torque of 0.001 Nm is applied about the b̂3 axis. No distributed loads are applied.
In this case, the translational velocities ν1 and ν2 increase linearly with time. The rotational
velocity ω3 also increases linearly with time. This was expected since there was constant
forcing and torquing in this case. No modes were ever excited, meaning that no vibration
of the membrane occurred. This is due to our previous assumption when formulating the
equations-of-motion that translational vibrations in the b̂1 and b̂2 directions would be ig-
nored. These results showcase how external forces in the b̂1 and b̂2 directions and external
torques in the b̂3 direction do not excite any modes in the membrane.

Decoupled Model Results

Figure (5) details the sun-synchronous orbit that will be used for our simulation. Two
cases will be considered in this orbit: no torque and sinusoidal torque. The former is to
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study if any modes will be excited during the orbit regardless of the spacecraft’s rotation,
and the latter is to study the modes excited with rotation on-top of orbital dynamics.

The results shown in Figure (6) display that only the first mode of the membrane is acti-
vated during the orbit when no external torque is present on the spacecraft. The spacecraft
started with no angular velocity and the body-frame was aligned with inertial. The modal
amplitude of this mode peaks at a magnitude greater than one. This means that, for our
spacecraft parameters, the membrane is experiencing large displacements from its resting
position. This may indicate that the decoupled assumption is not valid. This of course
depends heavily on the parameters of the spacecraft.

For the final case in Figure (7) where a sinusoidal external torque of amplitude 0.001
Nm (about all 3 axes) was applied on-top of the orbital dynamics, a similar trend to the
previous example occurred. The first mode had the same trend with slight fluctuations, but
the second and third modes were activated slightly as well. The magnitude of the second
and third modes was much smaller than that of the first mode. It seemed that, although
more modes were activated when an external torque was introduced, the dominate mode
occurred from the orbital dynamics rather than the rigid-body rotation. This of course
depends heavily on the parameters of the spacecraft as well.

CONCLUSIONS AND FUTURE WORK

In this paper, the ground work was laid for the derivation of equations-of-motion of
a coupled rigid-flexible spacecraft structure. First, Junkins’ and Kims’2 work in one-
dimensional equations-of-motion was extended to two-dimensions for a general coupled
rigid-flexible system. Then, a model was defined for the spacecraft and relevant posi-
tion vectors were introduced. From there, the model was applied to the two-dimensional
equations and equations-of-motion were obtained for the spacecraft. In total, there were
7 equations: three Newton’s second law (F = ma) equations, three Euler’s rigid-body
rotation equations, and one membrane equation. With this system of equations, the dynam-
ics of the spacecraft in orbit can now be solved. A preliminary analysis was preformed
by solving the membrane equation via the Galerkin method of weighted residuals. Solv-
ing these equations numerically for different external forces yielded intuitive results of the
membrane’s dynamics thus giving optimism for the formulation. A preliminary simulation
of the spacecraft in a sun-synchronous orbit yielded useful vibrational results that could be
used for structural analysis.

Further work can be done in modeling the spacecraft more accurately such modeling the
elastic domain as a plate rather than a membrane. There is also work to do in improving the
numerical efficiency when solving the differential equations of motion so that decoupling
the model is not necessary.
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Figure 3: Decoupled Model Flowchart
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(a) F = [0;0;0.001] N
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(b) τ = [0.001;0.001;0] Nm
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(c) F = [0.001;0.001;0] N, τ = [0;0;0.001] Nm

Figure 4: Preliminary Results
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(a) Reference Orbit in 3D

(b) Reference Orbit Position and Velocity

Figure 5: Sun-Synchronous Orbit
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Figure 6: Torque-Free Response
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Figure 7: Torque Response: τ = 0.001*[sin(t);sin(t);sin(t)] Nm

20


