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COORDINATE CHOICE IMPLICATIONS FOR UNCERTAINTY
PROPAGATION IN THE CR3BP FRAMEWORK

Sharad Sharan*, Roshan T. Eapen†, Puneet Singla‡, Robert G. Melton§

This paper employs the conjugate unscented transform technique to accomplish
uncertainty propagation using an alternate dynamical model of the Circular Re-
stricted Three Body Problem (CR3BP). The model introduced in this work offers
a different perspective to the CR3BP by forging an explicit dependence of the
equations of motion on the Jacobi constant. The advantages of such a perspective
in constructing the families of periodic orbits and in uncertainty propagation are
outlined with examples.

INTRODUCTION

Since the dawn of the Space Age, spacecraft have been sent to inconceivable distances, even far
beyond the edges of our Solar System. Space exploration has long since encompassed the cislu-
nar space, however, the prospect of sustained human presence, commercialization and advanced
scientific research is only now finding its way from low Earth orbit into cislunar space. Contin-
ued expansion in this endeavour is accompanied by various problems, one of them being spacecraft
tracking, especially given the enormous distances involved. A chief impediment to spacecraft track-
ing is uncertainty propagation. It is desirable to be able to predict the spacecraft’s state accurately at
a later time by propagating the statistical moments of an initial state distribution, so that appropri-
ate information regarding the spacecraft’s whereabouts can be passed on to tracking strategies. In
order to do this, an appropriate dynamical model is chosen. For cislunar space, this is generally the
Circular Restricted Three-Body Problem (CR3BP) with the Earth and the Moon as the primaries.

The CR3BP is a chaotic nonlinear system. Traditional schemes of propagating the central sta-
tistical moments rely heavily on linearized dynamics.1 These schemes are not ideal for a system
like the CR3BP. In such cases, a widely used method of uncertainty propagation is the computa-
tionally intensive Monte Carlo (MC) method, where tens of thousands of simulations are run for
each study.2, 3 There are several other techniques in literature that use alternate representations of
uncertainty, such as the Gaussian mixture approach4–6 and polynomial chaos expansions.2, 7 Meth-
ods like the State Transition Tensor Series (STTS)8 replace the MC integrations to generate data
for the propagation of moments. However, applying the STTS scheme involves the computation
of higher order sensitivities, which is not a trivial process. In this paper, the Conjugate Unscented
Transform (CUT)9 technique is employed to propagate the central moments. Moreover, CUT is
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shown to compute the higher order sensitivities in a computationally efficient manner, using which
the state of each sample in a distribution at any given time can be computed with ease.

Another factor in uncertainty propagation is the way in which the state of the spacecraft is de-
fined.1 To this effect, a judicious choice of the coordinate system can alleviate many of the chal-
lenges in classical uncertainty propagation. A comprehensive theoretical survey of approaches to
modeling and representing the restricted three body problem is provided by Szebehely.10 However,
the Cartesian coordinates are widely used, and there has been very minimal numerical exploration
using alternative coordinate systems. A coordinate system can be thought of as a language to con-
vey the dynamical messages of a system. Having one universal language to capture and convey
the wide variety of dynamics inherent in the CR3BP may not be the best idea for all engineering
cases. Therefore, this work explores a modified curvilinear coordinate language consisting of three
spherical position coordinates and two velocity pointing angles, to describe the message of uncer-
tainty in the spacecraft’s state from an alternate perspective. This curvilinear system is inspired by
the reduced order systems elaborated by Szebehely.10 Propagating an initial Gaussian distribution
of the states through the Cartesian CR3BP equations of motion generally leads to a spherical or
ellipsoidal distribution. This implies that the uncertainty in velocity vector is defined in all direc-
tions. Having the velocity pointing angles themselves as state variables, the uncertainty in velocity
vector direction can be defined within a cone, which makes more sense than having it be defined
along all directions. This aspect of the proposed model is investigated in this work by applying the
computationally inexpensive CUT method to the stochastic analysis of a reference trajectory in the
CR3BP.

The organization of the paper is as follows. First, the traditional CR3BP Cartesian model is
outlined, following which an alternate five dimensional model of the CR3BP called the Velocity
Angles Model (VAM) is discussed. This model ensures constancy of the Jacobi integral, despite
numerical precision issues. It is well known that energy preserving integrators are preferred in var-
ious fields that involve long-term model propagation,11 like celestial mechanics, plasma physics,
and many more. Such problems are modeled as Hamiltonian systems, and symplectic integrators
are used to preserve the Hamiltonian throughout the integration. However, symplectic integrators
require constraints to be placed in order to hold the Hamiltonian constant, which make the design
of such integrators non-trivial. The model presented in this paper requires no such constraints and
is independent of the integrator. The Jacobi integral is maintained constant as a result of the way
in which the VAM is defined. Building up on the VAM, a spherical model with one radial com-
ponent and four angular components, referred to as the Spherical-VAM (S-VAM) is developed. A
traditional spherical model comprises one radial and two angular components, however, to accom-
plish the aforementioned goal of maintaining constancy of C, two more angles from the VAM are
incorporated to create the S-VAM. Subsequently, the S-VAM is utilized to generate a few families
of periodic orbits in the CR3BP, outlining its advantages and drawbacks over the existing Cartesian
model. Following this, the S-VAM is employed in quantifying and propagating the uncertainty as-
sociated with a reference transfer from a Low Earth Orbit (LEO) to an L2 halo orbit. The following
sections go through the aforementioned contents in detail.

CIRCULAR RESTRICTED THREE BODY PROBLEM

The CR3BP is formulated in a frame that rotates along with the primaries, called the synodic
frame. The Earth-Moon synodic frame is illustrated in Figure 1. The x̂ basis vector points from
the origin, which is at the barycenter of the Earth-Moon system, toward the Moon. The ŷ basis
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vector is perpendicular to it and lies in the plane of motion of the primaries as shown in Figure 1.
The ẑ vector is given by the cross product of x̂ and ŷ. A canonical system of units is employed

Figure 1: The synodic frame

where one length unit (LU) is equal to the distance between the two primaries and one time unit
(TU) is chosen such that the mean motion of the primaries is unity. For the Earth-Moon system,
1 LU = 384 400 km and 1 TU = 4.3424 days.

The Cartesian CR3BP equations of motion are

v̇x = Ωx + 2vy (1a)

v̇y = Ωy − 2vx (1b)

v̇z = Ωz (1c)

where vx = ẋ, vy = ẏ, vz = ż, and Ω is the pseudo-potential in the synodic frame. Ωx,Ωy and Ωz

are the partial derivatives of Ω with respect to x, y and z, respectively.

Ω =
1

2
(x2 + y2) +

(1− µ)

r1
+
µ

r2
(2)

where r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x+ µ− 1)2 + y2 + z2, and µ = m2
m1+m2

. r1 and
r2 are the magnitudes of the position vectors of the spacecraft relative to the Earth and the Moon,
respectively. m1 and m2 are the masses of the Earth and the Moon, respectively. µ is the character-
istic parameter in the synodic frame. For the Earth-Moon system, µ = 0.012151. There exists an
integral of motion in the CR3BP known as the Jacobi integral or the Jacobi constant (C).

C = 2Ω− (v2x + v2y + v2z) (3)

The Jacobi constant is the sole constant of motion in the CR3BP and is a function of the velocity
and the pseudo-potential. This model of the CR3BP is the widely used Cartesian model in literature
as a good first approximation in the design of cislunar missions. The following section discusses
the VAM and how it ensures that C is maintained constant throughout the numerical propagation.
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Velocity Angles Model (VAM)

The existence of the Jacobi constant enables a reformulation of the aforementioned 6-dimensional
Cartesian model as a 5-dimensional model with Cartesian position components and velocity point-
ing angles. Such a formulation was used to identify Lyapunov orbits in the Earth-Moon planar
CR3BP by Pontani and Conway.12 A three dimensional extension of that model is developed here.
From Fig. 2 and Eq. (3), the following can be written.

Figure 2: Velocity vector pointing angles

v2xy = v2x + v2y = 2Ω− C − v2z (4a)

vx = |vxy| cos γ (4b)

vy = |vxy| sin γ (4c)

vxy = |v| cosβ (4d)

vz = |v| sinβ (4e)

where γ and β are the velocity pointing angles in the x̂ − ŷ plane, and out of the x̂ − ŷ plane,
respectively. From Eqs.(4),

tan γ =
vy
vx

(5a)

tanβ =
vz
vxy

(5b)

Differentiating these with respect to time and making appropriate substitutions, expressions for the
evolution of γ and β are derived to be

γ̇ =
Ωy cos γ − Ωx sin γ√

2Ω− C cosβ
− 2 (6)

β̇ =
1√

2Ω− C
[Ωz cosβ − sinβ(Ωx cos γ + Ωy sin γ)] (7)

Using Eqs. (6) and (7), the velocity pointing angles can be propagated holding C constant. The
fact that C appears explicitly in these equations is what ensures its constancy through the numerical
propagation. From these angles, the individual velocity components can be calculated using Eq. (4).
Therefore, the VAM ensures that numerical issues do not accumulate error in the Jacobi constant for
long term propagations. It is to be noted that when the velocity vector is solely along ẑ (i.e., β = π

2 ),
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or when velocity is zero, a singularity is present. However, such a condition was not encountered
when dealing with spacecraft approaching or departing periodic orbits in the CR3BP, nevertheless,
the possibility exists. Borrowing the velocity pointing angles from the VAM, a curvilinear CR3BP
model, the S-VAM is developed in the following section.

S-VAM

Traditionally, a spherical coordinate system includes a radial distance (r), an in-plane angle called
the azimuth (θ), and an out-of-plane angle called the elevation (φ). In-plane refers to the plane
containing all the equilibrium points in the context of the CR3BP. The Cartesian components of
position are related to these spherical components in the following way.

x = r cosφ cos θ (8a)

y = r cosφ sin θ (8b)

z = r sinφ (8c)

The inverse transformation is given by

r =
√
x2 + y2 + z2 (9a)

θ = tan−1
(y
x

)
(9b)

φ = tan−1

(
z√

x2 + y2

)
(9c)

Eqs.(9) are differentiated with respect to time to obtain the ODEs

ṙ =
√

2Ω− C [cosφ cosβ cos (γ − θ) + sinφ sinβ] (10)

θ̇ =

√
2Ω− C
r cosφ

cosβ sin(γ − θ) (11)

φ̇ =

√
2Ω− C
r

[sinβ cosφ− sinφ cosβ cos(γ − θ)] (12)

The Cartesian components in Eqs.(6) and (7) are transformed to the spherical system using Eqs.(9)
to obtain

γ̇ =
1√

2Ω− C cosβ

{
r cosφ sin θ cos γ

(
1− (1− µ)

d31
− µ

d32

)

− sin γ

[
r cosφ cos θ − (1− µ)(r cosφ cos θ + µ)

d31
− µ(r cosφ cos θ − 1 + µ)

d32

]}
− 2 (13)

β̇ =
1√

2Ω− C

{
−r sinφ cosβ

(
(1− µ)

d31
+
µ

d32

)

− cos γ sinβ

[
r cosφ cos θ − (1− µ)(r cosφ cos θ + µ)

d31
− µ(r cosφ cos θ − 1 + µ)

d32

]

− r cosφ sin θ sin γ sinβ

(
1− (1− µ)

d31
− µ

d32

)}
(14)
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where,

d1 =
√
r2 + µ2 + 2µr cosφ cos θ (15a)

d2 =
√
r2 + (µ− 1)2 + 2r cosφ cos θ(µ− 1) (15b)

Eqs.(10) - (14) can be numerically propagated in the spherical coordinate system, ensuring the
preservation of the sole integral of motion, C. It is to be noted that when the velocity is close
to zero, a singularity is being approached in the S-VAM: γ and β are no longer uniquely defined.
This causes serious deficiencies while analyzing motion in the vicinity of the equilibrium points.
Therefore, this model doesn’t stand alone as a holistic representation of the dynamics in the CR3BP,
instead, it offers an alternative C-oriented perspective to numerical propagation in the CR3BP. In
the following section, the VAM and the S-VAM are compared against the Cartesian model.

MODEL VALIDATION

For the purpose of validation, three cases with different initial conditions are chosen in such a
way so as to study different parts of the state space. Each trajectory is numerically propagated for a
period of 176 days, with an absolute integration tolerance of 10−15.

Case 1

As a first test case, an initial condition is chosen such that the trajectory remains in the vicinity
of the Earth for extended periods of time as illustrated in Fig. 3a. This trajectory corresponds to
C = 3.982755396. The L1 gateway is closed for this value of C. It can be observed from Fig.
3c, that there is good agreement between the S-VAM and the VAM, both of which preserve C,
whereas, the position error between these models and the Cartesian model seems to grow over time.
This error is a consequence of the error in C that is accrued by propagation in the Cartesian model,
as illustrated in Fig. 3e. However, recall that C is strictly maintained constant in the VAM and
S-VAM propagations. Although both VAM and S-VAM results are plotted, recall that the goal here
is to explore a fully curvilinear model that preserves C. Since the VAM has rectilinear position
components, the main focus in this paper will be on the S-VAM.

Case 2

In case 2, an initial condition is picked such that the trajectory evolves in the vicinity of the Moon,
as illustrated in Fig. 3b. This corresponds to a value of C = 3.181281559. Once again, there is
a good agreement between the VAM and the S-VAM as seen in Fig. 3d. The error evolution in C
follows a similar trend as in Case 1, but in higher magnitudes, as illustrated in Fig. 3f. This indicates
that this trajectory’s sensitivity to C is relatively higher than case 1. Therefore, for cases 1 and 2,
the VAM and S-VAM seem to be more accurate compared to the Cartesian model since C is strictly
preserved.

Case 3

After studying the models in the vicinity of the Earth and the Moon in case 1 and case 2, respec-
tively, a trajectory that traverses the L1 gateway is chosen in case 3. This trajectory corresponds
to C = 3.031508331. The initial condition is that of a halo orbit, which on long term propaga-
tion, leaves the halo and drifts through the L1 gateway, as illustrated in Fig. 4a. This trajectory
is observed to have the most disagreement between the models, among the three cases studied. It
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was noted earlier that the VAM and S-VAM were more accurate than the Cartesian model because
C was preserved. However, that alone is clearly not the discriminating factor between the models
here.

(a) Trajectory (X-Y plane) - Case 1 (b) Trajectory (X-Y plane) - Case 2
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(c) Position error between the Cartesian model and the
S-VAM/VAM - Case 1
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(d) Position error between the Cartesian model and the
S-VAM/VAM - Case 2
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(e) Error evolution in C (Cartesian model) - Case 1
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(f) Error evolution in C (Cartesian model) - Case 2

Figure 3: Cases 1 and 2

Considering the dynamics modeled by the CR3BP, an initial condition pertaining to a periodic
solution must ensure that the solution is maintained as the trajectory is propagated through time.
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(a) Trajectory (X-Y plane)
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(b) Position error between the Cartesian model and the
S-VAM/VAM
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(c) Error evolution in C (Cartesian model)

Figure 4: Case 3

The fact that it departs the periodic solution in case 3 indicates the accumulation of numerical
errors, as well as the high sensitivity of the CR3BP. Every numerical propagation accrues error. The
error observed in C in the Cartesian propagation is due to the errors accumulated in each of the
states. Error accumulation is not the same in curvilinear and rectilinear coordinates. Recall that the
VAM is partially rectilinear, while the S-VAM is curvilinear. Although both of them preserve the
parameter C, errors still accumulate in their states in different ways. These error manifestations are
investigated through a parameter sensitivity analysis that is detailed in the following section.

PARAMETER SENSITIVITY ANALYSIS

In order to obtain further insight into the disagreement between the models in case 3, a sensitivity
analysis with respect to C can be carried out. In the Cartesian propagation, the variation in C due
to the variation in each state variable is computed and plotted in Fig. 5. These plots essentially tells
us about the variation in C for a unit variation in the state variables. When these sensitivities are
multiplied by an assumed state variation on the order of the integration tolerance, then δC values
close to the ones shown in Fig. 4c are observed. It is also observed that the variation in x has the
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most profound effect on the variation in C.
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Figure 5: Sensitivity of C with respect to the states

In the S-VAM propagation, C is held constant, therefore there is no variation in C. However,
numerical errors have to manifest somewhere else, as they cannot be magically erased by a trans-
formation. Having said that, there is no evidence to the contrary that they cannot be mitigated by a
transformation. To that effect, the variation in velocity is studied.

C = 2Ω− v2

δC = 2δΩ− 2vδv

δv =
δΩ

v

δΩ is in turn a function of r, θ and φ. Therefore, the sensitivity of v with respect to r, θ and φ
are computed and plotted in Fig. 6. It appears that δr is most influential on δv. Following a rough
comparison between the largest effects induced on δC and δv, from Figs. 5 and 6, respectively,
it can be said that for this particular trajectory, the numerical errors accumulated by the S-VAM
(manifesting in velocity) are smaller than those accumulating in the Cartesian model (manifesting
in C). The disagreement between the VAM and the S-VAM in Fig. 4b is also explained through this
sensitivity analysis, since the error accumulating in x (significantly influences the VAM) is higher
than the error accumulating in r which influences the S-VAM. Thus, the S-VAM, with mitigated
error accumulation in its curvilinear coordinates and its ability to preserve C, is more accurate,
especially for long term propagation, and is adopted as the model of choice for the remainder of
this paper. The perspective offered by the S-VAM is further explored by employing it to generate
periodic solutions, which is detailed in the following section.

PERIODIC SOLUTIONS USING THE S-VAM

Ideally, the generation of periodic solutions starts with the Lyapunov orbits. These are found
using solutions from a linear approximation of the dynamics in the vicinity of a Lagrange point.
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Figure 6: Sensitivity of velocity with respect to position

However, this linearization cannot be performed in the S-VAM due to the singularities at the equi-
librium points. The linear approximation for the S-VAM is provided by the Cartesian model to
set up the periodic orbit generation process in the S-VAM. Using this approximation, the initial
conditions for Lyapunov orbits in the non-linear dynamics are found in the S-VAM by differential
correction.

The search for appropriate initial conditions for a periodic orbit starts from the solution to the lin-
ear approximation. Thus, an iterative scheme is necessary to take this initial linear approximation,
apply it to the nonlinear dynamic system, and correct it until it converges to the required solution.
In the Cartesian space, the use of mirror configurations plays a vital role while applying the differ-
ential correction scheme to an approximate solution. In a similar fashion, mirror configurations are
explored in the S-VAM.

A well known property of the Lyapunov orbit is that it is planar, and crosses the x− z plane per-
pendicularly. This means that at the crossing, we have a configuration of the state ([r, θ, φ, γ, β])
that resembles a planar mirror: [r, 0, 0, π

2 , 0]. This knowledge enables us to define the constraints
and parameters with which the differential corrector can be set up with. The design variables are
the ones the differential corrector is solving for. In this case, they would be r and τ , where τ is the
half time period. The constraints at the final time would be θf = 0 and γf = −π

2 . The parameter
which is held constant in order to find the design variables is C. The differential correction can now
be performed as r

τ


new

=

r
τ


old

−

Φθ,r θ̇f

Φγ,r γ̇f

−1  θf

γf + π
2

 (16)

where, Φ is the State Transition Matrix (STM). This process is carried out to obtain an initial
condition pertaining to a Lyapunov orbit. Now, the entire family of Lyapunov orbits can be obtained
by Natural Parameter Continuation (NPC). This refers to the process by which the parameter (C in
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this case) is stepped up or down by a certain amount, and the initial conditions corresponding to the
new value of the parameter are found by iteratively solving Eqn.(16). This process was carried out
to obtain the L1 and L2 families of Lyapunov orbits as illustrated in Fig. 7a. It is to be noted that
in computing these families, a total of 30 ODEs were integrated in the S-VAM to get the states and
the STM, as opposed to integrating 42 ODEs in the regular Cartesian model, thereby significantly
reducing computation.
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(a) Lyapunov families (b) Halo families

Figure 7: Periodic orbits generated using the S-VAM

In order to identify halo orbits, we look for a configuration of the state resembling a reflection(
[r, 0, φ, π

2 , 0]
)

at the x − z crossing. Unlike the Lyapunov orbit generation, C cannot be used
for the NPC here. This is because, C as a parameter, does not force the corrector to look for
initial conditions out of the plane. The only state forcing that is φ. Therefore, φ must be used as a
parameter to ensure that the corrector doesn’t find planar Lyapunovs again. The correction process
is now carried out as

r

C

τ


new

=


r

C

τ


old

−


Φθ,r Φθ,C θ̇f

Φγ,r Φγ,C γ̇f

Φβ,r Φβ,C β̇f


−1 

θf

γf + π
2

βf

 (17)

Notice that while applying Eqn.(17), the STM should also include the partial derivatives of the states
with respect to C. This means an additional dummy equation of motion Ċ = 0 is included, thereby
bringing the system order back to 6. This is done solely for the purpose of finding the sensitivities
of the states to C. On carrying out the NPC along φ, a family of halos is obtained as illustrated
in Fig. 7b. NPC is subsequently carried out along r to obtain more members of the family. The
generation of periodic solutions completes a comprehensive testing of the S-VAM in the natural
dynamics of the CR3BP. The following section explores uncertainty propagation using the S-VAM,
its advantages and limitations in detail.

UNCERTAINTY PROPAGATION

Uncertainty propagation in the S-VAM is carried out using the Conjugate Unscented Transform
(CUT)9 technique. It is an extended form of the unscented transform (UT), with modifications in
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the definition of the traditional sigma points. UT and CUT fall under a category of non-product
quadrature schemes. To begin discussion on these schemes, a quick recap of basic quadrature
schemes is presented here. The fundamental idea behind any quadrature scheme is that the integral
of a function can be expressed as a weighted sum of function evaluations at specific points. These
points and weights are what differentiate the various quadrature methods. Applying this idea to find
the expectation value of f(x),

E[f(x)] =
N∑
i=1

wif(xi) (18)

where xi are the specific points where the function is evaluated, wi are the corresponding weights
assigned and N is the total number of points. Note that in a multidimensional system, f and x are
both vectors. Expressing f(x) as a Taylor series of mth order about a nominal solution (x∗),

f(x) = f(x∗) +
∂f(x∗)

∂xα1

δxα1 + . . .
1

m!

∂mf(x∗)

∂xα1 . . . ∂xαm

δxα1 . . . δxαm (19)

for α1, . . . , αm = 1, . . . , n, where n is the number of dimensions. Substituting Eq. (19) in Eq. (18),
and noting that the partial derivatives are constants, we get

f(x∗) +
∂f(x∗)

∂xα1

E[δxα1 ] +
1

m!

∂mf(x∗)

∂xα1 . . . ∂xαm

E[δxα1 . . . δxαm ]

= f(x∗)
N∑
i=1

wi +
∂f(x∗)

∂xα1

N∑
i=1

wiδx
(i)
α1

+ . . .
1

m!

∂mf(x∗)

∂xα1 . . . ∂xαm

N∑
i=1

wiδx
(i)
α1
. . . δx(i)αm

(20)

Equating the coefficients of the partial derivatives on both sides of Eq. (20) yields the Moment
Constraint Equations (MCEs)

E[δxα1 ] =

N∑
i=1

wiδx
(i)
α1

(21)

E[δxα1δxα2 ] =
N∑
i=1

wiδx
(i)
α1
δx(i)α2

(22)

...

E[δxα1 . . . δxαm ] =
N∑
i=1

wiδx
(i)
α1
. . . δx(i)αm

(23)

Therefore, given the knowledge of these expectation values (statistical moments) of x, the mo-
ments of f(x) can be evaluated up to mth order accuracy by solving for a specific set of points and
corresponding weights, such that the MCEs are satisfied.13

The traditional method of finding the statistical moments is the Monte Carlo (MC) method. Sev-
eral points from an initial probability density function are selected and propagated through the
nonlinear system dynamics to evaluate the statistical moments at the final time. This scheme of ran-
dom sampling means that the MCEs are approximately satisfied as the number of sampled points
increases, but never exactly satisfied.
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Deterministic techniques to satisfy these constraints are generally provided by various quadrature
methods, the most renowned being the Gaussian Quadrature Rule (GQR). GQR provides the mini-
mum number of points necessary to satisfy the MCEs when dealing with a single variable. N points
are necessary to integrate up to (2N − 1)th order polynomials.14 The addition of dimensions brings
with it the need to construct a grid of quadrature points by computing tensor products of the one
dimensional points, therefore leading to an exponential growth in the required number of points,
consequently increasing computational costs.

Sparse grid methods15–17 are well known alternatives to GQR, since they require fewer points
compared to full tensor product methods. However, the sparse tensor product scheme is prone to
cause negative weights, which allow significant error to creep into the integration.13 Thus enter
non-product quadrature schemes.

The UT is a popular non-product quadrature method. UT is capable of integrating n-dimensional
variables up to third-order accuracy with simply a linear growth in the number of required points.18

The points are placed symmetrically on the principal axes of the n-dimensional variables. Due to
this symmetry, all odd-order moments are inherently satisfied. The even-order moments are then
used to solve for the exact position of these points and their weights. A drawback of the UT is that
any moment that includes more than one dimension cannot be satisfied by simply placing points on
the principal axes. This is where the CUT method takes over.

The CUT is similar to UT in that it has points placed symmetrically on the principal axes such that
odd-order moments are automatically satisfied. In addition to these axes, a conjugate set of axes is
also defined, which contain several symmetrically placed points as well. These points along the con-
jugate axes help satisfy the cross-moment constraints in the case of multidimensional variables.19

Altogether, the CUT points ensure the exact evaluation of multidimensional expectation integrals
with a significantly smaller number of points than the previously discussed schemes. Adurthi et
al.19–22 provide an extensive study with applications outlining the advantages of the CUT method-
ology over conventional quadrature rules. Adopting the CUT method, stochastic study of a reference
trajectory in the CR3BP is carried out using the S-VAM in the following section.

Case study

In order to test uncertainty propagation in the S-VAM, a reference transfer from a low Earth orbit
to an L2 halo orbit is chosen, as illustrated in Fig. 8. An impulsive ∆V is applied to this translunar
trajectory to effect insertion into a trajectory on the stable manifold of the halo orbit. It is to be
noted that due to the nature of the S-VAM, uncertainty in the magnitude of the velocity vector can
be dealt with, independent of the uncertainty in its direction. The following study deals with the
uncertainty associated with the firing angle of the thruster, and the position of the spacecraft at the
impulse point. In order to capture this uncertainty, a uniform distribution of samples corresponding
to ±[5 km, 0.2°, 0.2°, 5°, 5°] in [r, θ, φ, γ, β] about the impulse point on the reference trajectory is
generated. Note that this setup assumes that the energy imparted by the thruster is same as that
of the reference transfer. First, 1 000 000 Monte Carlo samples are integrated for a time period of
two days using the S-VAM. This is followed by multiple sets of simulations, that are carried out by
subsequently reducing the number of samples by an order of ten.

The first and second order statistical moments are calculated for each set of MC simulations, and
compared with those obtained using the CUT methodology. The two norm of the error in the mean
and covariance between the two methods is plotted as illustrated in Fig. 9. It can be observed that
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Figure 8: Reference trajectory from LEO to an L2 halo orbit
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Figure 9: Two-norm error between the CUT and MC computations of the mean and covariance

as the number of samples increases, the error between MC and CUT reduce. This is indicative
of the fact that the CUT points enable an accurate calculation of the moments without the need for
numerous samples like the MC method. In addition to being able to compute the statistical moments
in a computationally efficient manner, CUT can also be used to approximate the solution flow.

Approximating the solution flow: Earlier, the approximation of a function by means of a Taylor
series about a reference value of the function was discussed. Revisiting that, Eq. (19) can be written
compactly as

f(x) ≈ DΦ(x) (24)

where D is a matrix of coefficients corresponding to the partial derivatives, and Φ(x) is a vector
of polynomial basis functions. In computing the solution flow, evaluation of the partial derivatives
to build the D matrix is generally the computationally expensive part. However, if f(x) and Φ(x)
were known, it would only take a least squares procedure to evaluateD, as opposed to going through
cumbersome integration to find the partials. Due to the aforementioned advantages, the CUT points
are chosen as the points at which f(x) and Φ(x) are evaluated.

The approximation error is given by

ej = fj(x)− djiΦi(x) (25)
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The cost function to minimize is

J =
1

2
< ej , ej > (26)

The inner product is with respect to the weights assigned to the CUT points. Minimizing J ,

∂J

∂djk
= 0 (27)

⇒ < fj(x), Φk(x) > = dji < Φi(x), Φk(x) > (28)

dji =
< fj(x), Φk(x) >

< Φi(x), Φk(x) >
(29)

However, given a set of orthogonal polynomial basis functions, we can say that

< Φi(x), Φk(x) > = 0, for i 6= k (30)

This further reduces computational complexity, as the matrix of the inner products of these orthog-
onal polynomials (the normal matrix) is diagonal. Computing the inverse of a diagonal matrix is
trivial, therefore, basis functions are preferred to be orthogonal. In addition to this, the normal
matrix can be computed offline, thereby reducing on-the-fly computational load. In this work, the
orthogonal polynomial basis functions up to degree four are considered. As a result of making φi(x)
orthogonal, the coefficients computed are not exactly a reflection of the partial derivatives that ap-
pear in the Taylor series, nevertheless, they carry the same notion of sensitivities in the new basis
system.

Altogether, evaluation of f(x) and φ(x) at the CUT points enable the computation of the sensi-
tivity coefficients (matrix D). D can then be used to approximate the solution at any point in the
vicinity of the reference trajectory as DΦ(ζ), where ζ is the state vector normalized in accordance
with the distribution of CUT points chosen to evaluate the basis functions at. In this way, the so-
lution at the final time for all the samples can be found using the sensitivity coefficients. This is
referred to as the sensitivity matrix method (SMM).13 The SMM is extremely useful, as it allows a
significantly quicker function evaluation, as opposed to a series of integration using an MC scheme.
This can be realized by clocking the computation time for each method, as shown in Table 1. All
computations were run on an Intel Xeon E5-2695 processor and parallelized over 32 cores. There
is no parallelization necessary while using the CUT scheme.

Number of samples Computation time (MC) (sec) Computation time (CUT) (sec)
1 000 000 507.06 9.43
100 000 80.41 0.84

Table 1: Comparison of computation time

In order to learn the accuracy of the SMM approximation, the two norm of the error in position is
plotted against the initial and final Mahalanobis distances of the samples, as shown in Fig. 11. The
Mahalanobis distance (Md) of each sample is calculated as

Md =

√
(~xt − ~µt)TΣ−1

t (~xt − ~̃µt) (31)
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where µt is the mean vector of the state distribution at time t, and Σt is the covariance of the
distribution. Md is a measure of how far the multi-dimensional sample sits from the mean. Three
different cases are studied, with each case differing by the degree of uncertainty in the velocity
pointing angles, as summarized in Table 2 and illustrated in Fig. 10. It can be discerned from
the cones of uncertainty in Fig. 10, that changes in the velocity vector direction inside the cone
could possibly take the spacecraft away from the intended terminal manifold. Even worse, if the
spacecraft has enough energy to reach the family of halos around L2 and it is not heading the right
way, then that energy level is sufficient to carry the spacecraft through the L2 gateway and out of the
system. Therefore, such a sensitive trajectory is chosen as the test case for our stochastic analysis.
Uncertainty in the position of the spacecraft during the impulse is taken to be ±[5 km, 0.2°, 0.2°]
about the reference impulse point for all the cases.

γ (deg) β (deg)
Case 1 [−5, 5] [−5, 5]
Case 2 [−10, 10] [−10, 10]
Case 3 [−15, 15] [−15, 15]

Table 2: Assumed range of deviation of the samples from the reference impulse point

Figure 10: Cone of uncertainty (γ, β)

The time at the impulse point is designated as t0, and the time of propagation of the samples
is designated as tf . Md is calculated for the samples at t0 and tf and plotted along the x and y
axes, respectively, in Fig. 11. The colorbar is representative of the position error in km between the
MC integration and the CUT approximation. Figs. 11a, 11b and 11c provide information about the
distributions in the three cases 30 min after the impulse. The maximum position error for case 1 at
this tf is on the order of 10−3 km. As the initial range of uncertainty in γ and β increases in cases 2
and 3, the errors creep up as well. A diagonal structure in Fig. 11a indicates that the samples which
start off at a specificMd at t0 retain more or less the sameMd at tf . However, it can quickly be seen
that this structure does not last with increase in tf , as illustrated in Figs. 11d and 11g for case 1. At
tf = 52 hours, the maximum error for case 1 is on the order of hundreds of meters, thus reaching a
threshold beyond which the CUT approximation is no longer valid.
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(b) tf = 0.5 hours (Case 2)
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(c) tf = 0.5 hours (Case 3)

0 1 2 3 4

0

1

2

3

4

5

6

10
-4

10
-3

E
rr

o
r

(d) tf = 2.5 hours (Case 1)
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(e) tf = 2.5 hours (Case 2)
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(f) tf = 2.5 hours (Case 3)
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(g) tf = 52 hours (Case 1)
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(h) tf = 52 hours (Case 2)
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(i) tf = 52 hours (Case 3)

Figure 11: Position error (in km) between MC integration and CUT approximation plotted against
the initial and final Mahalanobis distances of the samples

Recall that case 1 had the lowest maximum deviation in γ and β. This indicates that for this
particular trajectory, uncertainty can be propagated at a significantly reduced computational cost for
up to 50 hours using CUT, should the initial deviation in γ and β be less than 5°. As this initial
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deviation increases, the time of validity of the CUT approximation decreases, as illustrated in the
plots corresponding to cases 2 and 3 in Fig. 11. The CUT approximation is considered valid in these
simulations, as long as the maximum error is on the order of 10−2 km. It is clear from Figs. 11h
and 11i, that γ and β samples belonging to the cones of uncertainty corresponding to cases 2 and
3, carry very high errors on the order of kilometers after 52 hours. Therefore, CUT can no longer
be used and a more tedious MC scheme is required. However, in a practical sense, we would not
require the propagation of uncertainty for over two days, as the frequency of observation would be
higher than one in two days.

After having gauged the degree of accuracy of the SMM, it can now be used to obtain stochastic
insight that will aid not only in the trajectory planning, but also the tracking process. It would
be beneficial to know the consequences of an off-nominal burn at a later time, so that the sensors
can be tasked to re-acquire the spacecraft at the next instance of observation. In order to do that,
useful information can be gathered from histograms of the states, which are illustrated in Fig. 12
for case 1. At tf = 0.5 hours, the distribution is more or less rectangular (Fig. 12a), consistent
with our construction of initial samples which were uniformly distributed. As tf increases, the
probabilities vary as illustrated in Figs. 12b and 12c, providing information on the best estimate of
the spacecraft’s state at any given time. Using this, sensors can be tasked to achieve a successful
observation. The SMM, with its significantly low computational expense, allows such an analysis to
be possible, much quicker than a traditional MC routine. Moreover, for this case study of a misfired
thruster, the S-VAM, being a reduced order model, offers further reduction in computation required
by the SMM.

SUMMARY

An alternate five dimensional model of the CR3BP, called the S-VAM was derived. This model
was tested in multiple different regimes of the CR3BP. The S-VAM raised a question of ”which
model is closer to the truth?”, which led to a sensitivity analysis that yielded further insight about the
nature in which the states and parameters of the system are interwoven. During the model validation
phase, three trajectories were propagated for a period of 176 days. Such a period is well within
the ballpark of a low-thrust spacecraft traversing cislunar space.23 The aforementioned sensitivity
analysis was carried out for this entire period on one of the trajectories. This analysis concluded
that the S-VAM accumulated smaller numerical errors compared to the Cartesian model, with the
added advantage of preserving C throughout the integration. This renders long-term propagation
using the S-VAM more reliable than the Cartesian system. Therefore, the S-VAM proves to be the
model of choice for analysis of low-thrust spacecraft trajectories in cislunar space. Following this, it
was successfully demonstrated that Lyapunov and halo orbits can be generated in the S-VAM, with
increased computational advantage over the traditional Cartesian system.

The S-VAM enabled the propagation of uncertainty in the direction of velocity, independent of
its magnitude. A case study was presented to illustrate this feature. The SMM, using CUT points
in the S-VAM, was employed to approximate the solution flow about a reference trajectory. The
computational significance of the SMM was illustrated by computing the solution flow for a million
samples in a meager amount of time compared to the MC approach.

The S-VAM in its present form applies only to a conservative environment. In this work, the
S-VAM was employed for stochastic analysis only after the action of the thruster. A continuation
of this work will involve modifications to the EOMs such that a non-conservative effect can be
included, which will facilitate stochastic analysis of actively maneuvering spacecraft.
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(a) tf = 0.5 hours

(b) tf = 2.5 hours

(c) tf = 52 hours

Figure 12: Histograms of the states at different times (Case 1)
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