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The focus of this work is to develop a reduced-order model to capture the motion of a large,
flexible spacecraft from distributed sensor measurements. The spacecraft structure is motivated
by a concept for capturing solar energy and accurately directing it to desired locations on the
Earth’s surface. A previously developed analytical model is utilized to simulate data of the fully-
coupled attitude-orbital-flexible dynamics of a large spacecraft in orbit. Utilizing this simulation
in place of an experimental test-bed, local acceleration sensor measurements, distributed across
the surface of the spacecraft, are obtained. This data is then used to find a reduced-order model
to estimate the shape of the spacecraft in real-time with lower computational complexity.

Rather than finding a global model between input and output space, system theory concepts
are utilized to find a subspace over which the unknown dynamics evolve. This paper utilizes
the Eigensystem Realization Algorithm (ERA) to obtain said reduced-order model. The
derived reduced-order model is guaranteed to capture controllable and observable modes of
the spacecraft motion. The reduced-order model’s validity is tested by attempting to replicate
the analytical model’s output data and dynamic characteristics such as modal frequency and
damping. The resultant reduced-order model accurately reproduced the output data and
dynamic characteristics of the analytical model. This provides a basis for optimism in identifying
flexible-body dynamics from input-output data while in an orbit.

I. Introduction
The accurate and timely supply of energy for the Department of Defense is paramount to mission success. Space-solar

power is one concept to address this need via capturing solar energy in space and accurately directing it to required
locations on the Earth’s surface. The Space Solar Power Incremental Demonstrations and Research Project (SSPIDR)
considers deploying large solar arrays as a solution; however, to accurately transmit power, precise knowledge of the
dynamic shape of the flexible structure is required [1]. A conceptual design of a SSPIDR spacecraft is shown in Figure 1.

Using a novel “sandwich tile”, solar energy is collected via photovoltaic cells, converted to Radio Frequency (RF),
and then beamed to a receiving antenna on the ground. The ground station then rectifies the RF beam into usable
power. The shape of the spacecraft helps to aim the RF beam onto the receiving antenna. If the RF beam is required
to be within centimeters of the ground station, an angle tolerance on the order of micro-degrees is required for the
spacecraft’s beaming (assuming a Low Earth Orbit). Additionally, vibrations of the structure are of interest and must be
minimized in order to maintain pointing accuracy. One concept to measure the structural shape is to utilize sensors over
the surface that provide local displacement or slope information. This local data can be utilized to estimate the shape
of the spacecraft and therefore apply corrections to the radio-frequency beam formation. This requires the study of
flexible-body dynamics coupled with rigid-body dynamics.

Large, flexible structures in space is not a new concept. In 2021, the Air Force Research Laboratory’s Demonstration
and Science Experiments (DSX) spacecraft served a 23-month mission in which the complex relationship between
low-frequency radio waves and the Earth’s radiation belts in medium Earth orbit (MEO) was explored [2]. A precision
25 meter boom and 25 meter truss were tested. The long antenna of this spacecraft would vibrate while in orbit and
was damped to ensure proper experimentation. Additionally, there is the concept of solar sail in which a large, flexible
“sail” utilizes momentum from photons to translate [3]. In 2019, the LightSail 2 spacecraft was launched into orbit and
utilizes a 32 𝑚2 solar sail to resist atmospheric friction in order to stay in orbit [4]. Much like the concept design for
SSPIDR, the sail is a large, two-dimensional structure. Although solar sails are typically smaller than what is planned
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Figure 1 Spacecraft Concept [1]

for SSPIDR (solar sails typically have a surface area 𝑂 (10)𝑚2 while SSPIDR is expected to be at least 𝑂 (100)𝑚2), they
experience similar challenges with induced vibrations due to translation, rotation, and gravitational effects.

Flexible multi-body systems have been a significant research topic for decades. The work of Meirovich and Stemple
[10] from the mid 90s diverges away from classical approximations such as the Rayleigh-Ritz Method and finite-element
methods. Instead, a mathematical formulation for distributed-parameter multi-body systems that consists of ordinary
and partial differential equations of motion in terms of quasi-coordinates is presented. Similarly, the work of Junkins and
Kim [8] provides a Lagrangian framework to derive equations of motion of distributed-parameter multi-body systems.
This methodology was utilized previously to produce an analytical model that fully encapsulates the coupled rigid-body,
flexible-body, in-orbit dynamics of a large, flexible spacecraft [6].

Although the analytical modeling results are useful for analysis, the simulations’ long run-times hinder the practicality
of their use in real-time control and decision making. Furthermore, external effects due to change in environment
conditions (such as temperature gradients) affect the accuracy of analytical models as they are difficult to model. Hence,
there is a need to develop methods which can capture essential dynamics and/or corrections to analytical models from
sensor observations. It is desired that such approaches can trade off between accuracy and computation time.

Reduced-order modeling comes from a broader topic referred to as system identification, which finds a dynamical
model solution for the input-output data collected over time. The output at any given time is considered a function of the
input signal, which is also a function of time. Implicitly, one expects the input-output data to be sufficiently rich such
that the reduced-order model is accurate over a wide class of inputs and is useful for other purposes such as controlling
the system.

Recent advances in machine learning, such as artificial neural networks (ANN), can be used to find a global
continuous map from system input space to system output space; however, the performance of these algorithms
decreases drastically as the dimension of the system output vector increases. To make this point more clear, consider
the problem of active control of a flexible space structure. Generally, the system output vector consists of surface
distortion measurements at various spatial points, 𝑂 (103), which are measured by sensors such as strain gauges, slope
sensors, stereo vision systems, LIDAR, etc. If one seeks a dynamic continuous map between the system output and
input, then the dimension can be as large as the number of measurements, i.e. 𝑂 (103). Conversely, the dimension of the
hidden states corresponds to the number of dynamic structural modes of interest, which are typically fewer than 10.
Therefore, a system identification algorithm is desired that can approximate the system output accurately while keeping
the dimension of the dynamic map as low as possible.

The specific problem of flexible structure control blends concepts from engineering mechanics, control theory, and
computational science in order to damp the vibrations detected by sensors on the spacecraft. Working at the confluence
of these different disciplines, the engineers of the 90s contributed to many advancements in linear system theory [8].
As a result, the preceding decades led to many works in the time-domain identification of linear systems [9, 11–14].
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Ho and Kalman [9] paved the way for minimum realization theory by showing that a minimum dimension state-space
model can be achieved by analyzing a sequence of pulse response functions known as Markov parameters. Since then,
an extension of the Ho-Kalman algorithm, known as the Eigensystem Realization Algorithm (ERA) [15, 16], has been
at the forefront of system identification due to its efficiency and ease of use. ERA provides a minimal-realization of the
system based solely on input-output data and allows for further system analysis and control.

In the context of a large, flexible spacecraft, ERA identifies the main vibrational modes excited during a spacecraft’s
mission and is used for the reduced-order modeling in this paper. In general, there are nonlinear system identification
techniques available that represent state-perturbation dynamics for large classes of systems where a linear approximation
is not adequate [5, 7]. This is especially true for systems of high state dimension (i.e. large, flexible spacecraft).
The work of Junkins and Singla [5] found that linear system identification (via ERA) can perform well in identifying
perturbation dynamics. Additionally, the linear model can be combined with nonlinear correction terms to improve
fidelity. In this paper, simplifying assumptions are made for the spacecraft model that result in linear equations of motion
for the elastic domain. Although this results in a lack of fidelity, the aim is a proof of concept of system identification
methods for spacecraft inspired by SSPIDR.

To this effect, the ultimate goal of this paper is to provide evidence for the practicality of system identification
methods in the context of large, flexible space structures. As a result, the objective is to use ERA to identify a
minimal-realization of the flexible space-based structure from input-output data that allows for further system analysis
and control.

In this paper, the previously mentioned high-fidelity coupled rigid-flexible dynamic model is used to simulate the
output of acceleration sensors distributed over the surface of the elastic domain of the spacecraft. ERA is then used to
find a reduced-order dynamic model from these sensor measurements. Lastly, the reduced-order model is tested for
validity by comparing its output and eigenvalues to that of the analytical model.

II. Problem Statement
Consider the coupled rigid-flexible structure in the linear state-space form

¤z = 𝐴𝑐 (𝑡)z + 𝐵𝑐 (𝑡)u, z ∈ R𝑛×1, u ∈ R𝑔×1 (1)

y = 𝐶 (𝑡)z + 𝐷 (𝑡)u, y ∈ R𝑚×1, (2)

where z is the hidden state vector, y is the output, and u is the input. A discrete time model corresponding to the solution
of (1) can be written as

¤z𝑘+1 = 𝐴𝑘z𝑘 + 𝐵𝑘u𝑘 , 𝐴𝑘 = Φ(𝑘 + 1, 𝑘) (3)
y𝑘 = 𝐶𝑘z𝑘 + 𝐷𝑘u𝑘 , (4)

where Φ(𝑘 + 1, 𝑘) is the state transition matrix between time steps. The system identification problem corresponds to
finding an estimate of the discrete time system matrices, 𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘 , and 𝐷𝑘 from time history of u𝑘 and y𝑘 . After
obtaining this model, subsequent analyses identify vibrational modes that occur during the structure’s motion. This
information can then be utilized during the development and execution of the spacecraft’s mission. Ideally, this output
data would come from the spacecraft itself, but in the absence of an experimental test-bed, a high fidelity spacecraft
model is utilized. The basics of this model are detailed in the Section IV.

It is assumed that the vibrations of the flexible membrane are caused by the rigid body motion only. A specific type
of ERA is preformed within this paper referred to as “Initial Condition ERA” (ERA/IC). This means the system matrices
are identified from experimental data in which there is no input and a nonzero deflection of the structure at the initial
time. Once a model is obtained via ERA/IC, it will be tested to observe its accuracy. Additionally, how the sensors’
noise level affects the accuracy of the identified model is studied (identified meaning the state-space form obtained via
ERA/IC).

III. Model Identification

A. Time-Varying ERA from Initial Condition Response
ERA is an algorithm that required experimental data from one of two types of experiments: i) zero-state initial

condition with impulse input or nonzero-state initial condition with zero input [20]. Additionally, the classic approach
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provided a time-invariant model, while this paper aims to identify a time-varying model. Traditionally, the algorithm
utilizes the impulse input to define "Markov parameters" which are system-unique parameters used in Hankel matrices
to preform system identification. Singular-value decomposition is applied to the Hankel matrices and heavy matrix
algebra leads to the identified/minimal system matrices �̂�𝑘 , �̂�𝑘 , �̂�𝑘 , and �̂�𝑘 .

As a result of preforming initial-condition response, Markov parameters lose their meaning. As a result of the system
being time-varying, Hankel matrices are not defined, but instead a Hankel-like matrix is formed. This Hankel-like
matrix is populated with raw output data rather than Markov parameters. Now, instead of identifying �̂�𝑘 , �̂�𝑘 , �̂�𝑘 , and
�̂�𝑘 matrices, matrices �̂�𝑘 , �̂�𝑘 , and �̂�0𝑘 are identified instead. Note that �̂�0𝑘 is a vector of initial conditions in the
minimal-realization coordinate system. There are no �̂� and �̂� matrices to identify because there is no input. The
response of a generic discrete system with no input and an arbitrary initial condition (may be nonzero) is

x𝑘+1 = 𝐴𝑘x𝑘 (5)
y𝑘 = 𝐶𝑘x𝑘 . (6)

The general solution of equations (5) and (6) can be written in terms of the state-transition matrix, Φ𝑘 , as,

x𝑘 = Φ(𝑘, 𝑘𝑜)x0 (7)
y𝑘 = 𝐶𝑘Φ(𝑘, 𝑘𝑜)x0 (8)

where Φ(𝑘, 𝑘𝑜) is defined as,

Φ(𝑘, 𝑘𝑜) =


𝐴𝑘−1𝐴𝑘−1...𝐴𝑘0 , ∀𝑘 > 𝑘0

𝐼 𝑘 = 𝑘0

𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑, ∀𝑘 < 𝑘0.

(9)

A reduced-order model of the system is obtained by utilizing initial-condition time-varying ERA (TVERA/IC). The
algorithm begins by defining a Hankel-like matrix, �̃�𝑘 , whose columns consist of 𝑀 experimental data vectors. These
𝑀 columns of output data are concatenated up to the (𝑘 + 𝑝 − 1)𝑡ℎ time step, where 𝑝 and 𝑀 are chosen to capture the
order, 𝑛, of the system.

�̃�
(𝑝,𝑁 )
𝑘

=


𝑦#1
𝑘

𝑦#2
𝑘

. . . 𝑦#𝑁
𝑘

𝑦#1
𝑘+1 𝑦#2

𝑘+1 . . . 𝑦#𝑁
𝑘+1

...
...

. . .
...

𝑦#1
𝑘+𝑝−1 𝑦#2

𝑘+𝑝−1 . . . 𝑦#𝑁
𝑘+𝑝−1


(10)

To obtain a minimum realization of the discrete system, a singular-value decomposition of the �̃�𝑘 matrix is
preformed,

�̃�𝑘 = 𝑂
(𝑃)
𝑘
𝑋

(𝑁 )
𝑘

= 𝑈𝑘Σ
1
2
𝑘
Σ

1
2
𝑘
𝑉𝑇
𝑘 (11)

=

[
𝑈

(𝑛)
𝑘

𝑈
(0)
𝑘

] [Σ (𝑛)
𝑘

0
0 Σ

(0)
𝑘

] [
𝑉

(𝑛)𝑇
𝑘

𝑉
(0)𝑇
𝑘

]
(12)

≃ 𝑈 (𝑛)
𝑘

Σ𝑛
1
2

𝑘 Σ𝑛
1
2

𝑘 𝑉
(𝑛)𝑇
𝑘

. (13)

It can then be shown that a minimum realization of the discrete system is given by

�̂�𝑘 = Σ𝑛
1
2

𝑘+1𝑉
(𝑛)𝑇
𝑘+1 𝑉

(𝑛)
𝑘

Σ𝑛
− 1

2
𝑘 (14)

�̂�𝑘 = 𝐸 (𝑚)𝑇𝑈 (𝑛)
𝑘

Σ𝑛
1
2

𝑘+1 (15)

�̂�0 = Σ𝑛
− 1

2
0 𝑈

(𝑛)𝑇
0 �̃�0, (16)

where 𝐸 (𝑚)𝑇 =

[
𝐼𝑚 𝑂𝑚 . . . 𝑂𝑚

]
and 𝑚 is the number of outputs for each experiment. Equations (14)-(16) are

utilized within equations (5) and (6) to iterate over time and produce output data. If the reduced-order model accurately
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represents the dynamics of the true system, then the outputs of the two match. Note that one can only identify the model
until the time step 𝑡 𝑓 − 𝑝. Any time after 𝑡 𝑓 − 𝑝, the �̃�𝑘 matrix cannot be filled out and thus a state-space realization
cannot be obtained. This meaning, the larger the value of 𝑝, the less time the identified model is valid for. It should also
be reiterated that the state vector obtained via ERA, z, is not the same as the reference state vector, x. Conversely, the
output, y, is the same for both systems. The identified state vector, z, is assumed to have no physical significance.

B. Comparing Identified and Reference Eigenvalues
One can write a transformation from the traditional state vector, 𝒙, to a new state vector, 𝒛, as

𝒛𝑘 = 𝑇𝑘𝒙𝑘 , (17)

where 𝒛 is the minimal-realization coordinate-system state vector obtained via TVERA (also referred to as the “identified”
or “minimal” state). Rewriting equation (5) in terms of 𝒛

𝒛𝑘+1 = 𝑇−1
𝑘+1𝐴𝑘𝑇𝑘 𝒛𝑘 (18)

:= �̂�𝑘 𝒛𝑘 . (19)

Note here that, unlike in time-invariant systems, �̂�𝑘 is not a similarity transformation of 𝐴𝑘 ; it is a more generic,
topological transformation of 𝐴𝑘 . This implies that the system matrices �̂�𝑘 and 𝐴𝑘 do not have the same eigenvalues
at any arbitrary values of 𝑘 . Because the system evolution takes place in two different coordinate systems, 𝑇𝑘+1, 𝑇𝑘 ,
this leads the basis vectors for the initial time step and the final time step to be different [20]. One wishes to compare
the eigenvalues of the true and identified system matrices for analysis purposes. This discrepancy can be corrected by
applying the following correction to the system matrix

˜̂
𝐴𝑘 = 𝑂

†
𝑘
𝑂𝑘+1 �̂�𝑘 , (20)

where (.)† denotes a pseudo inverse [20]. Equation (20) shows the transformation for the identified system matrix, �̂�𝑘 ,
but this transformation must be applied to the true system matrix, 𝐴𝑘 , as well. After the above transformation is applied,
the following occurs:

˜̂
𝐴𝑘 = 𝑂

†
𝑘
𝑂𝑘+1 �̂�𝑘

= 𝑇−1
𝑘 𝑂

†
𝑘
𝑂𝑘+1𝑇𝑘+1𝑇

−1
𝑘+1𝐴𝑘𝑇𝑘

= 𝑇−1
𝑘 𝑂

†
𝑘
𝑂𝑘+1𝐴𝑘︸       ︷︷       ︸
�̃�𝑘

𝑇𝑘

= 𝑇−1
𝑘 �̃�𝑘𝑇𝑘 .

After applying the correction from equation (20), the system matrices are similarity transformations of each other
and their eigenvalues can be compared at each time step. If the true system is a time-varying, linear system then the true
and identified eigenvalues should match post transformation. If the true system is nonlinear then the eigenvalues do not
necessarily match.

IV. Numerical Results

A. Coupled Rigid and Flexible Body Model
As a motivating example for ERA, consider the vibrations of the spacecraft depicted in Figure 2. This is a conceptual

design for a spacecraft whose main mission is the collection and redirection of solar energy for power-beaming purposes.
The structure is modeled as a rigid frame with a flexible membrane clamped within. The coupled equations of motion
are derived based on the Lagrangian formulation presented in [6, 8] and are omitted from this paper for brevity sake.
Only the resulting equation of motion related to the motion of the membrane is necessary for this analysis. The reference
frames and relevant vectors are depicted in Figure 2. The black {𝑖, 𝑗 , �̂�} frame is the inertial-reference frame and the red
{�̂�1, �̂�2, �̂�3} frame is the body-fixed frame.
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Ƹ𝒊

Ƹ𝒋

𝒌
𝒃1

𝒃𝟐

𝒃𝟑

Flexible 
Membrane

Rigid 
Frame

Figure 2 Spacecraft Model and Frame/Vector Definitions

1. Dynamics
The position vectors shown in Figure 2 are defined as

r𝑅𝐵 = 𝑋b̂1 + 𝑌 b̂2 + 𝑍b̂3 (21)
r𝐹𝑙𝑒𝑥 = r𝑅𝐵 + r𝑀𝑒𝑚 (22)
r𝐹𝑙𝑒𝑥 = r𝑅𝐵 + 𝑥b̂1 + 𝑦b̂2 + [b̂3 (23)

= (𝑋 + 𝑥)b̂1 + (𝑌 + 𝑦)b̂2 + (𝑍 + [)b̂3, (24)

where {x,y,[} are the positions of any membrane element relative to the rigid body center of mass in the {b̂1, b̂2, b̂3}
reference frame, respectively, and {X,Y,Z} are the inertial position of the center of mass of the rigid frame written in
body-fixed coordinates.

The full set of differential equations of motion for the spacecraft are omitted from this paper for brevity’s sake. For
the purposes of this paper, the only necessary equation of motion is

𝜌(¥𝒓𝐹𝑙𝑒𝑥) · 𝒃3 − 𝑃∇2[ = 𝑓 . (25)

Only using the above equation is sufficient for this analysis since the goal is to identify the vibrations of the membrane
and not the rigid-body dynamics of the rigid frame. Note that 𝜌 is the areal density of the membrane, 𝑃 is the tension
per unit length of the membrane, and 𝑓 is an arbitrary distributed force applied to the membrane.

The displacement of the membrane normal to its surface, [(𝑥, 𝑦, 𝑡), is written as the double sum

[(𝑥, 𝑦, 𝑡) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜙𝑖 𝑗 (𝑥, 𝑦)𝑞𝑖 𝑗 (𝑡), (26)

where 𝜙𝑖 𝑗 (𝑥, 𝑦) are the assumed modes, 𝑞𝑖 𝑗 (𝑡) are the corresponding time-varying modal amplitudes, and 𝑁 ≜ 𝑛2 is
the total number of assumed modes. Two indices are needed since the membrane is a two-dimensional structure. The
assumed modes are taken to be the eigenfunctions of a clamped-clamped membrane case and are defined as

𝜙𝑖 𝑗 (𝑥, 𝑦) = sin
[
𝑖𝜋

𝑎
(𝑥 − 𝑎

2
)
]

sin
[
𝑗𝜋

𝑏
(𝑦 − 𝑏

2
)
]

𝑖, 𝑗 = 1, 2, ..., 𝑛, (27)
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where 𝑎 and 𝑏 are the membrane’s width and height, respectively. Opting to write the above assumed modes with a single
index, for the case of 𝑛 = 2, the modes are referred to as [1 2 3 4] instead of [(1, 1) (1, 2) (2, 1) (2, 2)], respectively.
This meaning

𝜙𝑖 (𝑥, 𝑦) := 𝜙 𝑗𝑘 (𝑥, 𝑦) where 𝑖 = 𝑛( 𝑗 − 1) + 𝑘,

where now 𝜙𝑖 (𝑥, 𝑦) goes from 1 to 𝑛2. Once again, 𝑁 ≜ 𝑛2 and represents the total number of assumed modes.
Now, applying the above assumed modes approximation to the expanded form of equation (25) and applying the

Galerkin method of weighted residuals [23] leads to∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
𝜌 ¤a3𝜙 𝑗 + 𝜌𝜙𝑖 ¥𝑞𝑖𝜙 𝑗 + 𝜌 ¤𝜔1𝑦𝜙 𝑗 − 𝜌 ¤𝜔2𝑥𝜙 𝑗 − 𝜌a1𝜔2𝜙 𝑗 + 𝜌(−𝜔2

2 − 𝜔
2
1) (𝜙𝑖𝑞𝑖𝜙 𝑗 )

+𝜌𝜔3𝜔2𝑦𝜙 𝑗 + 𝜌𝜔1a2𝜙 𝑗 + 𝜌𝜔1𝜔3𝑥𝜙 𝑗 − 𝑃𝜙𝑥𝑥𝑖𝑞𝑖𝜙 𝑗 − 𝑃𝜙𝑦𝑦𝑖𝑞𝑖𝜙 𝑗 − 𝑓 𝜙 𝑗

]
𝑑𝑥𝑑𝑦 = 0

𝑖 = 1, 2, ..., 𝑁 𝑗 = 1, 2, ..., 𝑁,

(28)

where 𝑁 is the number of assumed modes. In equation (28), {a1, a2, a3} are the inertial velocities written in the
body-fixed coordinates and {𝜔1, 𝜔2, 𝜔3} are the angular velocities written in the body-fixed coordinates. Note that in
equation (28) repeated indices, such as 𝜙𝑖 ¥𝑞𝑖 , represent the full summation of the function that is being approximated
with assumed modes, whereas 𝜙 𝑗 represents each individual assumed mode being used as weighting functions in the
Galerkin method of weighted residuals.

The system of equations defined in (28) can be rearranged into the form

𝑀 ¥𝒒 + 𝐾𝒒 = 𝐹, (29)

where 𝑀 , 𝐾 , and 𝐹 are defined as

𝑀𝑖 𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
𝜌𝜙𝑖𝜙 𝑗

]
𝑑𝑥𝑑𝑦 (30)

𝐾𝑖 𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
− 𝜌(𝜔2

1 + 𝜔
2
2)𝜙 𝑗 − 𝑃(𝜙𝑥𝑥𝑖 + 𝜙𝑦𝑦𝑖 )𝜙 𝑗

]
𝑑𝑥𝑑𝑦 (31)

𝐹𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
𝑓 + 𝜌(− ¤a3 − ¤𝜔1𝑦 + ¤𝜔2𝑥 + a1𝜔2 − 𝜔3𝜔2𝑦 − 𝜔1a2 − 𝜔1𝜔3𝑥)

]
𝜙 𝑗𝑑𝑥𝑑𝑦, (32)

where 𝑀 ∈ R𝑁×𝑁 , 𝐾 ∈ R𝑁×𝑁 , and 𝐹 ∈ R𝑁×1. Here, 𝑖 and 𝑗 represent the (𝑖𝑡ℎ, 𝑗 𝑡ℎ) element of each matrix and both
go from 1 to 𝑁 . Note that there is no repeated index here so there is no summation in these definitions.

2. State Space Model
By assuming free vibrations (𝐹 = 0), the resulting equations of motion of the spacecraft model can be converted into

the following first-order, continuous, time-varying, linear system

¤𝒙 = 𝐴𝑐 (𝑡)𝒙 (33)
𝒚 = 𝐶 (𝑡)𝒙, (34)

where 𝒙 = [𝒒 ¤𝒒]⊺ ∈ R2𝑁×1 is the state vector, 𝒚 ∈ R𝑚×1 is the output vector, and

𝐴𝑐 (𝑡) =
[
𝑂𝑁×𝑁 𝐼𝑁×𝑁

−𝑀−1𝐾 (𝑡) 𝑂𝑁×𝑁

]
, (35)

where 𝐼𝑁×𝑁 and 𝑂𝑁×𝑁 are the identity and zero matrices, respectively. 𝑀 and 𝐾 are the mass and stiffness matrices,
respectively. Note that the only time-varying aspect comes from the (𝜔2

1 +𝜔
2
2) term in the 𝐾 matrix as shown in equation

(31) (assuming membrane parameters are constant).
The output for this system is the acceleration of the membrane at 𝑚 locations; representing 𝑚 accelerometers

distributed across the membrane. The acceleration output matrix 𝐶 (𝑡) is determined by first writing equation (26) in
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terms of matrix multiplication with the modal amplitude vector 𝒒

𝜼𝑚 =


𝜙1 (𝑥1, 𝑦1) . . . 𝜙𝑁 (𝑥1, 𝑦1)

...
. . .

...

𝜙1 (𝑥𝑚, 𝑦𝑚) . . . 𝜙𝑁 (𝑥𝑚, 𝑦𝑚)

 𝒒, (36)

where 𝜼𝑚 represents a vector of displacement at 𝑚 locations on the membrane. Noting that only 𝒒 is a function of time
on the right-hand-side of the equation (36), taking two time derivatives and substituting for ¥𝒒 from equation (29) with
𝐹 = 0 yields

¥𝜼𝑚 = −


𝜙1 (𝑥1, 𝑦1) . . . 𝜙𝑁 (𝑥1, 𝑦1)

...
. . .

...

𝜙1 (𝑥𝑚, 𝑦𝑚) . . . 𝜙𝑁 (𝑥𝑚, 𝑦𝑚)

 𝑀
−1𝐾 (𝑡)𝒒. (37)

Lastly, defining ¥𝜼𝑚 as the output vector, 𝒚, and rewriting with 𝒙 = [𝒒 ¤𝒒]⊺ leads to

𝒚 = −


𝜙1 (𝑥1, 𝑦1) . . . 𝜙𝑁 (𝑥1, 𝑦1) 01𝑥𝑁

...
. . .

...
...

𝜙1 (𝑥𝑚, 𝑦𝑚) . . . 𝜙𝑁 (𝑥𝑚, 𝑦𝑚) 01𝑥𝑁

 𝑀
−1𝐾 (𝑡)𝒙 (38)

= 𝐶 (𝑡)𝒙, (39)

where 01𝑥𝑁 are rows of zeros to eliminate the ¤𝒒 portion of 𝒙.
For this paper, it is assumed 𝑛 = 2 and therefore 𝑁 = 4. This implies 𝐴𝑐 ∈ R8×8. Equations (33) and (34) can then

be discretized as

𝒒𝑘+1 = 𝐴𝑘𝒒𝑘 (40)
𝒚𝑘 = 𝐶𝑘𝒒𝑘 , (41)

by using 𝐴𝑘 = Φ(𝑘 + 1, 𝑘).

3. Initial Conditions
In order to excited all modes of the system, the initial conditions are chosen to be linear combinations of all four

assumed flexible body modes, which are the columns of the eigenvector matrix Φ =
[
𝝓1, 𝝓2, . . . , 𝝓𝑖 , . . . , 𝝓2𝑁

]
obtained

from the characteristic equation |𝐴 − _𝑖 | 𝜙𝑖 . The initial conditions are chosen to be

𝒒0𝑖 = 𝑟1 (𝝓1 + 𝝓2) + 𝑟2 (𝝓3 + 𝝓4) + 𝑟3 (𝝓5 + 𝝓6) + 𝑟4 (𝝓7 + 𝝓8) 𝑖 = 1, 2, . . . , 𝑅, (42)

where 𝑟1 through 𝑟4 are random scalars drawn from a normal distribution and 𝑅 is the number of initial conditions
used. In the absence of a real input for TVERA/IC, the initial conditions act as a sort of input instead. Therefore, it is
necessary to have at least 4 (𝑁) initial conditions in order to have "rich" enough input for TVERA/IC to identify the
system order correctly.

4. Stability of Analytical State-Space Model
Assuming that the geometry of the membrane results in the integral bounds being symmetric (i.e. the membrane

is a square or rectangle so 𝑎1 = −𝑎2 and 𝑏1 = −𝑏2), the resultant mass and stiffness matrices are diagonal. One can
verify by inspection that the mass matrix integral shown in equation (30) evaluates to zero when 𝑖 ≠ 𝑗 and evaluates to a
nonzero number when 𝑖 = 𝑗 for the assumed modes given in equation (27) (assuming 𝜌 is a constant). Therefore, the
mass matrix, 𝑀 , is diagonal.

As for the stiffness matrix, first simplify equation (31) by using the definition of the assumed modes given in equation
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(27). The terms 𝜙𝑥𝑥𝑖 and 𝜙𝑦𝑦𝑖 can be written as

𝜙𝑥𝑥𝑖 =
−𝑖2𝜋2

𝑎2 sin
[
𝑖𝜋

𝑎
(𝑥 − 𝑎

2
)
]

sin
[
𝑗𝜋

𝑏
(𝑦 − 𝑏

2
)
]

=
−𝑖2𝜋2

𝑎2 𝜙𝑖

𝜙𝑦𝑦𝑖 =
− 𝑗2𝜋2

𝑏2 sin
[
𝑖𝜋

𝑎
(𝑥 − 𝑎

2
)
]

sin
[
𝑗𝜋

𝑏
(𝑦 − 𝑏

2
)
]

=
− 𝑗2𝜋2

𝑏2 𝜙𝑖 .

This leading to 𝐾𝑖 𝑗 being rewritten as

𝐾𝑖 𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
− 𝜌(𝜔2

1 + 𝜔
2
2) + 𝑃𝜋

2
(
𝑖2

𝑎2 + 𝑗2

𝑏2

)]
︸                                       ︷︷                                       ︸

:=𝜓 (𝑖, 𝑗 ,𝜔1 ,𝜔2 )

𝜙𝑖𝜙 𝑗𝑑𝑥𝑑𝑦

=

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

𝜓𝜙𝑖𝜙 𝑗𝑑𝑥𝑑𝑦. (43)

The variable 𝜓 is not a function of the spatial variables x and y. Therefore, it can be treated as a constant during the
integration. Looking at the integral in equation (43), it is of the same form as the integral of the mass matrix from
equation (30). Thus, the stiffness matrix, 𝐾 , is diagonal for the same reasons the mass matrix, 𝑀 , is diagonal. Setting
𝑖 = 𝑗 and taking 𝜓 out of the integral in equation (43) leads to

𝐾𝑖𝑖 = 𝜓

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

𝜙2
𝑖 𝑑𝑥𝑑𝑦. (44)

Since 𝑀 and 𝐾 are diagonal, each diagonal element of 𝐾 must be positive for the system to be stable. 𝑀 and 𝐾 being
diagonal results in equation (29) consisting of 𝑁 decoupled spring-mass systems for the modal amplitude vector 𝒒. If any
element of 𝐾 is negative, a negative stiffness will occur and the corresponding modal amplitude will grow unbounded.
Since the integral part of equation (44) will always evaluate to a positive number, the focus is shifted to observing when
the value of 𝜓 is less than zero:

𝜓 = −𝜌(𝜔2
1 + 𝜔

2
2) + 𝑃𝜋

2
(
𝑖2

𝑎2 + 𝑖2

𝑏2

)
≤ 0 (45)

𝜌(𝜔2
1 + 𝜔

2
2) ≥ 𝑃𝜋2

(
𝑖2

𝑎2 + 𝑖2

𝑏2

)

(𝜔2
1 + 𝜔

2
2) ≥

𝑃𝜋2𝑖2

𝜌

(
1
𝑎2 + 1

𝑏2

)
. (46)

If the angular velocity of the spacecraft is too high, 𝐾 has at least one negative element and at least one modal
amplitude grows exponentially. If the angular velocity is not constant over time, then the system becomes unstable if
equation (46) is true at any time instance. This instability is a function of the size, density, and tension of the membrane.
This result concludes that previously developed analytical model [6] is valid for low angular velocities (relative to the
membrane parameters).

B. Model Identification Results
Next, the numerical analysis where the system matrix, 𝐴, is a time-varying matrix is preformed. This is done by

having a time-varying angular velocity. The output sensors consist of an evenly space 4 × 4 grid that starts 1 meter away
from the edges of the membrane. This is visualized in Figure 3.
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Figure 3 Sensor Layout: Red Dot Indicates Sensor, Black Circle Indicates Origin, and Black Dashed Line
Indicates Membrane Border

For the results in this section, the following parameters are used

N a b 𝜌 P 𝜔1 = 𝜔2

4 10 m 10 m 5 kg
m2 200 N

m 0.001 0.01𝑠𝑖𝑛(𝑡) + 0.1 rad
s

along with the previously stated assumed modes. To obtain initial condition response data, the system is integrated at a
propagation frequency of 100 𝐻𝑧 (i.e. Δ𝑡 = 0.01𝑠) and the data is sampled at every time step. The same random linear
combination of the eigenvectors is used as an initial condition for all results. The time span used for TVERA/IC system
identification is 0 to 20 seconds.

As for the sensor error, the noise is chosen to have a normal distribution with zero mean and a standard deviation
equal to 1% of the max acceleration the membrane experienced (different for each initial condition case). For this
experiment, 𝑁 = 20 and 𝑝 = 5 are used.

1. Singular Values of the Hankel-like Matrix
The singular values of the Hankel-like matrix at one time-instance are plotted in Figure 4. Note that, in general, the

singular values will be time varying; however, all SVPs at each time instance had the same shape in this experiment. The
blue data points correspond to the identified system with no noise, and the orange points to the system with noise. There
are 8 dominate singular values for both cases and adding noise causes the non-dominate singular values to increase by
approximately 13 orders of magnitude. The 8 values from both the noisy and no noise cases overlap in the figure. Note
that 8 values are identified because the system matrix, 𝐴𝑘 , is a 2𝑁 × 2𝑁 matrix. Regardless, the true order of the system
was determined accurately.
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Figure 4 Singular Value Plot of Hankel-Like Matrix

2. Eigenvalue Comparison
To verify that the identified system is accurate, the eigenvalues of the identified system matrix, �̂�𝑘 , are compared to

the eigenvalues of the true system matrix, 𝐴𝑘 . Figures 5 and 6 display the eigenvalues relative to the unit circle before
and after the transformation derived in Section III.B. For both cases, the transformation clearly helped the ability to
compare the eigenvalues. Subfigure (b) of each figure zooms in on one of the eigenvalue clusters after the transformation
to provide a clearer view for comparison. The no-noise case very accurately reproduces the true eigenvalues. There is
an interesting elliptical-like structure of the identified eigenvalues, while the true eigenvalues move purely on the unit
circle. In the noisy case, the identified eigenvalues lose their elliptical structure and instead become more of a cloud
around the true eigenvalues. Regardless, the identified eigenvalues accurately reproduce the true eigenvalues after the
transformation is applied.
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Figure 5 Eigenvalue Comparison With No Noise
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Figure 6 Eigenvalue Comparison With Sensor Noise

3. Verification
Next, the output data of the identified system is verified by propagating the state-space model with the initial

conditions. This is shown in Figure 7. In this experiment, 20 different initial conditions are used for propagation. Not all
initial conditions are shown to keep the figures a reasonable size. All data not shown have similar trends to those shown.

In the case of no sensor noise, the estimation error is on the order of 10−15 for all cases. When sensor noise is
added, The magnitude of the error increases to 10−4. It is expected that the error would increase with sensor noise.
Nonetheless, the noisy sensors reproduce the output of the system well. Since the output of the system often came close
to (or crossed) zero, percent-error graphs could not be provided because of misleading spikes in their magnitude.

13

D
ow

nl
oa

de
d 

by
 P

en
n 

St
at

e 
U

ni
v 

on
 S

ep
te

m
be

r 
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

20
68

 



0 5 10 15 20

-2

0

2

10-15 IC 1 Error

0 5 10 15 20
-2

0

2
10-4IC 1 Error: Noisy

0 5 10 15 20
-2

0

2
10-15 IC 2 Error

0 5 10 15 20
-1

0

1
10-4IC 2 Error: Noisy

0 5 10 15 20

-2

0

2

10-15 IC 3 Error

0 5 10 15 20
-2

0

2
10-4IC 3 Error: Noisy

Time (s)

A
cc

el
er

at
io

n 
E

rr
or

 (
m

/s
2
)

Figure 7 System-Output Replication Error

V. Conclusion
This paper demonstrates the efficacy of system identification algorithms in the dynamic modeling of large, flexible

spacecraft. Previous work is utilized to obtain coupled rigid-flexible equations of motion for a large, flexible spacecraft
via a Lagrangian method. Next, experimental response data is collected by propagating this high-fidelity dynamic
model with nonzero initial conditions and zero input. ERA is then applied to obtain a minimal realization of the system
matrices in the minimal coordinate system. This new system representation is then used to reproduce the high-fidelity
model’s dynamics. Accurate results are obtained from the reduced-order model and key dynamics are replicated even
with sensor noise present.

Overall, this method provides an efficient and effective way to identify the dynamics of complex structures by
analyzing the response from dominant modes. Combining the identified elastic model with known rigid-body dynamics
yields an accurate, data-driven model. This is an invaluable tool in the analysis of hybrid space structures where
analytical models sometimes fail to capture the dynamic coupling between the rigid and elastic domains. For spacecraft
being used in the Space Solar Power Incremental Demonstrations and Research Project (SSPIDR), the pointing accuracy
is of great importance. The solar energy collected must be directed accurately to the ground; therefore, a model that
provides both high-accuracy of the structural vibrations, while keeping the computational complexity low, is required
for mission success. This paper demonstrates that system identifications algorithms are practical and an excellent choice
for solving this engineering problem. The results of this paper provide ground for exploring the reduced-order modeling
of real, large, experimental space structures such as those inspired by SSPIDR.
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