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TIME-VARYING PERTURBATION MODEL IDENTIFICATION IN THE
NEIGHBORHOOD OF CR3BP PERIODIC ORBITS

Matthew Brownell*, Damien Guého †, Roshan Eapen‡, Puneet Singla§

The main focus of this work is to find a linear, time-varying model to cap-
ture the dynamics of periodic solutions in the vicinity of Lagrange points
in the Earth-Moon system via position and velocity measurements. This
is motivated by a need for station keeping in said orbits. Rather than find-
ing a global model between input and output space, subspace methods for
linear system identification will be utilized to find a subspace over which
the unknown dynamics evolve. This identification method allows one to
obtain a simplified linear model that deals with dominant dynamics of the
system, and subsequently apply known control theory for station keeping.

INTRODUCTION

The Global Exploration Roadmap1, 10, 14, 27 has garnered a renewed interest in the explo-
ration of the solar system. Among several different efforts, NASA is currently focused on
positioning and maintaining an inhabited facility in a long-term and relatively stable or-
bit in the lunar vicinity. The Earth-Moon libration points offer many options for both the
storage of propellant and supplies for lunar missions, as well as potential locations for a
space-based facility to support future crewed and robotic translunar missions.10, 27 Envi-
sioning a larger traffic of space missions fueled by Artemis’ plan of expanding the nation’s
geo-strategic and economic sphere to encompass the Moon with international partners and
private industry, applied research into autonomous guidance, navigation, and control, au-
tonomous re-planning, and expanding the knowledge base of possible transport opportuni-
ties within the expanded Earth neighborhood is warranted.

The pioneering work by Conley2 on the existence of transit trajectories in the Planar
Circular Restricted Three Body Problem (PCR3BP) led to much attention being devoted
to leveraging the collinear points for space missions.3, 4, 11, 16, 17, 26 The collinear equilibrium
points host a variety of different families of periodic solutions in its vicinity. The family
of periodic orbits in the vicinity of the L1 and L2 points exhibit both stable and unstable
behavior. A particular class of three-dimensional periodic orbits, called the Near Recti-
linear Halo Orbits (NRHO) are shown to be stable periodic orbits under the framework
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of the CR3BP. Therefore, one can reasonably assume that in a higher fidelity dynamical
framework, the external perturbations will will not result in a significantly large deviation
from the nominal halo orbit. Over an extended period of time, the perturbed motion may
remain arbitrarily close to the nominal solution due to the inherent stability of the periodic
solution.

Assuming inertial measurements are available for a spacecraft located in an NRHO, and
treating them as the output of a dynamical system, this work proposes to utilize the system
identification tool the Eigensystem Realization Algorithm (ERA) to find the subspace over
which the dynamics can be explained while approximating the input-output data with a
linear, time-varying system. Using the data-approximated state transition matrix, a station-
keeping strategy is developed that uses active control to bring the spacecraft back to the
nominal trajectory. This subspace will be in the form of a linear, time-varying system that
is least square based and is valid in a larger domain than the conventional Taylor series
based linearization.

Previous work with Koopman Operators approximates the dynamics near Lagrange points
instead as a linear, time-invariant system in a very high dimensional space.22 In general,
one wishes to have the approximated system be low dimensional for performance reasons.
High dimensionality generally means the model is not be amenable to analysis and control.
In addition, the relationship between eigenvalues of the Koopman operator and the true
dynamical characteristics are often difficult to understand. When utilizing the identified
system found via ERA, the dimension is low and the eigenvalues are easier to understand.

In this paper, the dynamics of the CR3BP will be briefly discussed, the station-keeping
method will be outlined, and the corresponding data-driven modeling algorithm (ERA) will
be discussed. Lastly, the validity of the data-driven model in the context of the CR3BP will
be tested.

PROBLEM STATEMENT

The motion of a particle subjected to the gravitational attraction of two bodies (i.e.,
primaries) is studied in this work.8, 19, 24 The underlying assumption that the mass of the
particle is negligible compared to the primary masses allows treatment of the three-body
problem as restricted in the sense that the primaries are assumed to move on Keplerian
orbits around their common barycenter. In this work, a special case of the restricted three-
body problem is considered wherein the primaries move in circular orbits. This dynamical
model is known as the Circular Restricted Three-Body Problem (CR3BP). It is described
using the vector differential equation below.

q̈ + 2ω × q̇ =
∂Ω

∂q
(1)

where, ω = [0, 0, n]T and q = [x, y, z]T . Ω = 1
2
(x2 + y2) + 1−µ

r1
+ µ

r2
is the CR3BP

pseudo-potential obtained by augmenting the inertial potential with the potential of the
rotating frame. Then, r1 = ((x + µ)2 + y2 + z2)1/2 and r2 = ((x − 1 + µ)2 + y2 +
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z2)1/2 locate the third body with respect to the first and second primary, respectively. It is
conventional to nondimensionalize the quantities in the CR3BP by selecting characteristic
quantities: the distance between the two primaries, and the sum of their masses are chosen
as units of length and mass.18, 24 The characteristic time is determined by normalizing the
mean motion, n, which gives the value of the gravitational constant as unity. Therefore,
the primaries complete one revolution about their barycenter in time t = 2π. The mass
parameter is defined as µ = m2

m1+m2
. Note that q is described in a rotating frame. The

transformations to the inertial frame coordinates (Q = [X, Y ]) are obtained through a
simple rotation about ω by an angle θ such that θ̇ = 1.24 This geometrical formulation is
illustrated in Figure 1.

Figure 1: Geometrical formulation for the PCR3BP. P1 and P2 are the two primaries with
masses, m1 and m2, respectively. P3 is the third body, located at (x, y) in the rotating
frame.

The equations of motion for the CR3BP are written more generally as,

ẋ = f(x) (2)

where x = [x, y, z, ẋ, ẏ, ż]T . Consider any nominal trajectory that one wishes to station
keep around, denoted as xNom(t). If the true motion of the spacecraft is given by x(t), then
the true perturbation from the nominal is

δx(t) = x(t)− xNom(t) (3)

If we instead preform a Taylor series expansion about the nominal trajectory and neglect
higher-order terms, the following approximation of the perturbation dynamics is obtained:

˙δx̃ = A(x)δx̃ (4)

A(x) =
∂f

∂x

∣∣∣∣
Nom

(5)
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where δx̃ is the perturbation from the nominal orbit obtained via the linearization and A(x)
is the Jacobian of the nonlinear system. This linearized equation can then be discretized as,

692δx̃k+1 = Φ(k + 1, k)δx̃k

:= Akδx̃k (6)

This linearization provides a good approximation around the neighborhood of the nom-
inal orbit, but will degrade once the state is sufficiently far from the nominal. To obtain
Φ(k+1, k), one must integrate the following differential equation between time steps (k to
k + 1):

Φ̇ = A(x)Φ (7)

In the case of the nominal being a point instead of a trajectory, A(x) is constant and Φ =
exp(A(x)∆t).

Description of Dynamics

The goal of this paper is to utilize time-varying ERA (TVERA) to identify the Ak matrix
using inertial position and velocity measurements over some time period. The reference
value of Ak can be computed using the true dynamics of equation (7). In general, these
measurements can be obtained from inertial measurement units (IMUs) onboard or high
fidelity ephemeris models offline. For simplicity, the measurements used in this paper will
be obtained by propagating initial conditions found by perturbing the nominal orbit’s initial
condition.

In this paper, we will consider station keeping around a nominal NRHO. First, the nomi-
nal initial condition, xNom(0), is perturbed to obtain N perturbed initial conditions denoted
as xi(0). These new initial conditions are then propagated for one nominal orbital period
to obtain N perturbed orbits. Based off equation (3), the perturbation from the nominal is
then,

δxi(t) = xi(t)− xNom(t) (8)

where i = 1, 2, ...N .

This results in the true perturbation motion that will be used for the system identification
process. The linearized equation (6) provides the reference for the linear perturbation dy-
namics of the nominal orbit. This reference will then be compared to the identified linear
model obtained via TVERA, denoted as δx̂.

There are now three different perturbation models: perturbations found via the true non-
linear dynamics, δx, true linearized dynamics, δx̃, and identified linear dynamics, δx̂.
This paper studies two aspects of station-keeping with system identification: (1) Compare
the identified linear dynamics with the true linearized dynamics in the reproduction of the
CR3BP nonlinear dynamics in the perturbation region of the NRHO, and (2) test if the
identified system can be utilized for station keeping about the nominal NRHO.
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Fixed-Time Targeting Problem

In order to test the applicability of the identified system for station keeping, we consider
a standard impulsive velocity maneuver that is found using differential corrections. In
general, in a fixed-time targeting problem one is given an initial state, a desired state on the
orbit, and a fixed time-of-flight. The goal is to calculate the required impulsive change in
initial velocity, ∆V , so that the desired state is reached in the fixed time-of-flight.

In order to solve for this ∆V , an iterative process is performed. This process is outlined
below:

1. Propagate the initial perturbed state for the given time-of-flight with an initial guess
for ∆V

2. Calculate the error between the final state and desired state

3. Utilize the state-transition matrix Φ(tfinal, tinitial) to calculate an updated ∆V

4. Adjust the initial state of the current iteration with updated ∆V

5. Repeat until a user-defined tolerance is met

One can calculate ∆V using the following least squares solution,

∆V = P †(Xfinal −XDesired) (9)

P =

[
Φrv

Φvv

]
(10)

Φ(tfinal, tinitial) =

[
Φrr Φrv

Φvr Φvv

]
(11)

where (.)† denotes a pseudo inverse. The state-transition matrix Φ (arguments dropped for
simplicity) can be found at any time by integrating equation (7) alongside the nonlinear dy-
namics given by equation (2), where the initial condition of Φ is the identity matrix. Note
that A(x) is the Jacobian of the nonlinear system and is linearized about the perturbed
trajectories found during each iteration of the differential corrections process enumerated
above. This differential equation for Φ will be taken as the ground-truth for the differen-
tial corrections process in this paper. The methodology of differential corrections for the
identified system found via TVERA is explained in the next two sections.

METHODOLOGY

In this section the mathematical framework for ERA is developed. Making use of in-
put/output data, a Singular-Value Decomposition provides a low-fidelity model for a dy-
namical system. Additionally, the comparison of eigenvalues and transformation of coor-
dinate frames is also discussed.
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The Eigensystem Realization Algorithm (ERA)

This paper utilizes the linear system identification tool, the Eigensystem Realization
Algorithm (ERA),12, 13 to find the subspace over which the dynamics can be explained
while approximating the input-output data collected from position and velocity sensors.
In essence, this paper aims to identify a linear model that captures the dominate modes of
system when perturbed from a nominal orbit. In general, the output of a system at any
given time is considered a function of the input signal, and the input signal is a function of
time. Implicitly, one hopes the input-output data approximated is sufficiently rich that the
model will be accurate over a wide class of inputs, and is useful for other purposes such
as station-keeping. ERA provides a minimal-realization of the system based solely off in-
put/output data and allows for further system analysis and control. The specific problem
of orbit control blends concepts from engineering mechanics, control theory, and computa-
tional science in order to keep the spacecraft in a desired orbit. Working at the confluence
of these different disciplines, the engineers of this era contributed to many advancements
in linear system theory. As a result, the proceeding decades led to many works in the time-
domain identification of linear systems.9, 20, 21, 23, 25 Soon after, Ho and Kalman9 paved the
way for minimum realization theory by showing that a minimum dimension state space
model can be achieved by analyzing a sequence of pulse response functions known as
Markov parameters. Since then, an extension of the Ho-Kalman algorithm, known as the
Eigensystem Realization Algorithm (ERA),12, 13 has been at the forefront of system iden-
tification due to its efficiency and ease of use. In short, ERA constructs a Hankel matrix
from the pulse response functions and utilizes the Singular-Value Decomposition to realize
the minimum order of the system. The low dimensionality of the dynamic map identified
through ERA is of interest given the corresponding low computational complexity.

Time-Varying ERA from Initial Condition Response

Given that the true linear perturbation dynamics, given by equation (4), have a time-
varying system matrix, it is reasonable to assume the identified system should be time
varying as well. TVERA is an algorithm that requires either data from zero initial condition
with impulse input or nonzero initial condition with zero input.5–7, 15 In this paper, we
will preform the initial-condition response (referred to as TVERA/IC) on the orbital data
obtained from position and velocity sensors. System matrix Âk, output matrix Ĉk, and
initial condition vector X̂0 will be the output of TVERA/IC. The X̂0 vector is a vector
of our initial conditions in the minimal-realization coordinate system (also referred to as
the identified system). This minimal coordinate system has no physical meaning. The
response of a generic discrete system with no input and an arbitrary initial condition (may
be nonzero) is

xk+1 = Akxk (12)
yk = Ckxk (13)

The general solution of equations (12) and (13) can be written in terms of the state-
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transition matrix, Φk, as,

xk = Φ(k, ko)x0 (14)
yk = CkΦ(k, ko)x0 (15)

where Φ(k, ko) is defined as,

Φ(k, ko) =


Ak−1Ak−2...Ak0 , ∀k > k0

I k = k0

undefined, ∀k < k0

(16)

We are interested in gathering information about the system from the initial condition
response data. The concept of observability is still valid, with the observability matrix
defined as

O
(p)
k =


Ck

Ck+1Ak

Ck+2Ak+1Ak

. . .
Ck+p−1Ak+p−2...A0

 . (17)

We now define a Hankel-like matrix, H̃k, whose columns consist of N experimental data
vectors. These N columns of output data are concatenated up to the (k+p−1)th time step,
where p and N are chosen by the user to capture the order, n, of the system.

H̃
(p,N)
k =


y#1
k y#2

k . . . y#N
k

y#1
k+1 y#2

k+1 . . . y#N
k+1

...
... . . . ...

y#1
k+p−1 y#2

k+p−1 . . . y#N
k+p−1

 (18)

To obtain a minimum realization of the discrete system, we perform a singular value
decomposition of the H̃k matrix. The minimal coordinate system mentioned before is a
result of this decomposition.

H̃k = O
(P )
k X

(N)
k = UkΣ

1
2
kΣ

1
2
k V

T
k (19)

=
[
U

(n)
k U

(0)
k

] [Σ(n)
k 0

0 Σ
(0)
k

][
V

(n)T

k

V
(0)T

k

]
(20)

≃ U
(n)
k Σn

1
2

k Σn
1
2

k V
(n)T

k (21)

Then, it can be shown that a minimum realization of the discrete system is given by

Âk = Σn
1
2

k+1V
(n)T

k+1 V
(n)
k Σn− 1

2

k (22)

Ĉk = E(m)⊤U
(n)
k Σn

1
2

k+1 (23)

X̂0 = Σn− 1
2

0 U
(n)T

0 H̃0 (24)
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where E(m)T =
[
Im Om . . . Om

]
and m is the number of outputs for each experiment.

We can now utilize equations (22)-(24) within equations (12) and (13) to iterate over time
and reproduce the given output data. It is important to emphasize that the corresponding
state obtained via the singular value decomposition is not generally the same as the true
state. In this paper, the identified system’s state is denoted as z and the position/velocity
state is denoted as x. Note that one can only identify the model until the time step tf − p.
Any time after tf − p, the H̃k matrix cannot be filled out and thus a state-space realization
cannot be obtained. This meaning, the larger the value of p, the less time the identified
model is valid for.

Comparing Identified and Reference Eigenvalues

One can write a transformation from the traditional position/velocity state vector x to a
new state vector, z, as,

zk = Tkxk (25)

where z is the minimal realization coordinate system state vector obtained via TVERA
(also referred to in this paper as the ’identified’ or ’minimal’ state). Rewriting equation
(12) in terms of z,

zk+1 = T−1
k+1AkTkzk (26)

:= Âkzk (27)

Note here that, unlike in time-invariant systems, Âk is not a similarity transformation of
Ak; it is a more generic, topological transformation of Ak. This implies that the system ma-
trices Âk and Ak do not have the same eigenvalues at any arbitrary values of k. Because the
system evolution takes place in two different coordinate systems, Tk+1, Tk, this leads the
basis vectors for the initial time step and the final time step to be different. We wish to com-
pare the eigenvalues of the true and identified system matrices for analysis purposes. This
discrepancy can be corrected by applying the following correction to the system matrix,

˜̂
Ak = O†

kOk+1Âk (28)

where (.)† denotes a pseudo inverse. Equation (28) shows the transformation for the iden-
tified system matrix, Âk, but this transformation must be applied to the true system matrix,
Ak, as well. After the above transformation is applied, the following occurs:

˜̂
Ak = O†

kOk+1Âk

= T−1
k O†

kOk+1Tk+1T
−1
k+1AkTk

= T−1
k O†

kOk+1Ak︸ ︷︷ ︸
Ãk

Tk

= T−1
k ÃkTk
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After the transformation, the system matrices are similarity transformations of each other
and their eigenvalues can be compared at each time step. If the true system is a time-
varying, linear system, then the true and identified eigenvalues should match post transfor-
mation. If the true system is nonlinear, then the eigenvalues do not necessarily match. In
this paper, we are dealing with a nonlinear system but still wish to see how the eigenvalues
compare post transformation.

Converting from Identified to True Coordinate System

In general, there is no guarantee that one will be able to convert the identified system
matrix, Âk, to the true system matrix, Ak. It heavily depends on how well conditioned your
identified output matrix, Ĉk, is. In general, the identified system is written as,

zk+1 = Âkzk

xk = Ĉkzk

By modifying indices and doing some algebraic manipulation, one can write the following
formulation,

xk+1 = Ĉk+1ÂkĈ
−1
k xk

= Akxk

Therefore,
Ak,est = Ĉk+1ÂkĈ

−1
k (29)

We now have a direct way to calculate our estimation of the true system matrix, Ak, from
our identified system and output matrices. Due to the inversion of Ĉk, the conversion is
dependent upon the identified system output matrix being nonsingular (can do least squares
or minimum norm solution if nonsquare).

SOLUTION APPROACH

After preforming TVERA/IC the following system will be identified,

δzk+1 = Âkδzk (30)

δx̂k = Ĉkδzk (31)

where Âk is the identified system matrix, Ĉk is the identified output matrix, δzk is the
perturbation of the identified coordinate system (no physical meaning), and δx̂k is the
estimated departure motion in the true coordinate system. First, this model will be directly
compared to the true linearized model given by equation (6). This comparison will be done
by observing how well both of them are able to replicate the true nonlinear output in the
chosen perturbed region. Next, the identified model’s ability to preform the station keeping
strategy defined in the Problem Statement will be tested.

When it comes to the identified system, after preforming the conversion shown in equa-
tion (29), the discrete Ak,est at each time step is obtained. By multiplying these together
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(as shown in equation (16)), one can obtain the estimated state-transition matrix, Φest, for
the differential corrections algorithm. Note that Φest is fundamentally different from the
previous reference Φ defined in the Problem Statement. The system matrices, Ak,est, are
obtained from linearizing about the nominal orbit instead of the perturbed trajectories found
during the iteration process. Interestingly, this means that when using Φest, the matrix value
never changes over the iterations in the differential corrections algorithm for a given time-
of-flight. This is not the case for the reference Φ whose value changes after each iteration
due to the Jacobian being a function of the state.

Nonetheless, we now have our ground-truth and identified system station-keeping meth-
ods defined and can compare their results. Before comparing their results, it is important
to note that the differential corrections method is notoriously sensitive to the initial guess
for ∆V . An uneducated initial guess can often converge to a state sufficiently far from the
desired state on the orbit. For the context of this paper, we wish to observe how well the
identified system strategy can station keep compared to the reference. Therefore, how close
the final state is to the desired is not of importance. The initial guess for ∆V is taken to be
zero for all cases.

Numerical Results

Figure 2: Nominal NRHO and Perturbed Orbits

First, the orbital data was obtained by numerically propagating the CR3BP’s dynamics
for a set of perturbed initial conditions. This is also often referred to as the ”training
data”. Figure 2 details the orbital data used for the system identification process. The
nominal NRHO and its initial condition are shown in red on the right of the figure. The 200
perturbed orbits were obtained by perturbing the nominal initial condition from a uniform
distribution with a maximum perturbation magnitude of 1 km and 1 m/s for the initial
position and velocity components, respectively. All initial conditions were then propagated
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for one nominal time period of 10.25 days. The perturbation of state from the nominal was
then utilized in the TVERA/IC process.

Figure 3: System output replication error

Figure 3 displays how well a time-varying, linear system replicates the nonlinear orbital
dynamics. Two linear systems’ replication error are shown: the true linearized CR3BP and
our identified system from orbital data. The error for each is equal to the corresponding
linear system’s state propagation minus the nonlinear system’s state propagation over one
orbital period. One can clearly see that, on average, both system preform approximately
the same over time. In general, the dynamics near our nominal NRHO seem to be well
approximated by a time-varying, linear system.

The singular value plot shown in Figure 4 has six distinct dominant singular values that
correspond to the true six-dimensional system the data was taken from. This meaning
our data was sufficiently rich that the overall dynamics are well captured in our identified
system. This is further shown in Figure 5 where the coordinate transformation shown in
equation (28) was applied. The true Ak and identified Âk matrices’ eigenvalues are com-
pared over time. Clearly these matrices’ eigenvalues do not completely match; however,
the identified eigenvalues have a similar structure as the truth. It was not expected for the
eigenvalues to match for the identification of a generic nonlinear system, but the similarities
bode well for the identified system.

Figure 6 illustrates a differential corrections station-keeping result for a time-of-flight of
6 days. The state starts at the initial condition for a new perturbed orbit found with the same
method as the training data for TVERA/IC. The identified system preforms near the same
as the ground-truth model. The desired final state was not met completely as mentioned in
the problem statement.

In Figure 7, the difference between the final state in the differential corrections algorithm
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Figure 4: singular value Plot of Hankel matrix

Figure 5: Eigenvalues of Ak over time

for the identified system and ground-truth are plotted as a function of time-of-flight. The
time-of-flight varies from 30 minutes to one full orbital period (10.25 days). It is clear that
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Figure 6: Differential corrections example

Figure 7: Differential corrections error vs time-of-flight

the identified system preforms just as well as the ground-truth over one revolution. The
difference seems to have slight peaks at certain time-of-flights, but further analysis would
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be needed for any conclusions on this matter.

Monodromy Matrix Analysis

The Monodromy matrix is used to determine stability of a periodic orbit and is equal to
the value of the state-transition matrix after an orbital period. The Monodromy matrix and
its eigenvalues were unable to be replicated accurately for cases of high perturbation. Table
(1) below shows the estimated Monodromy matrix values as the perturbation magnitudes
are decreased to near zero. As the value of the perturbations go to zero, the eigenvalues of
the estimated Monodromy matrix converge toward the true values. This convergence is a
good sign for the validity of our data-driven modeling.

Table 1: Mondromy matrix eigenvalues as perturbation values are decreased

Reference Eigenvalues Position Perturbation
Velocity Perturbation

1 km
1 m/s

500 m
1 cm/s

50 m
0.1 mm/s

10 m
0.01 mm/s

1 m
0.001 mm/s

-0.6569 + 0.7540i
-0.6569 - 0.7540i
0.7707 + 0.6372i
0.7707 - 0.6372i
1.0000 + 0.0000i
1.0000 + 0.0000i

-7.0867 + 5.7874i
-7.0867 - 5.7874i
5.6660 + 0.0000i
2.1164 + 1.1009i
2.1164 - 1.1009i

-2.3874 + 0.0000i

-0.6567 + 0.7541i
-0.6567 - 0.7541i
0.7821 + 0.6188i
0.7821 - 0.6188i
0.9880 + 0.1662i
0.9880 - 0.1662i

-0.6569 + 0.7540i
-0.6569 - 0.7540i
0.7707 + 0.6375i
0.7707 - 0.6375i
1.0209 + 0.0000i
0.9791 + 0.0000i

-0.6568 + 0.7540i
-0.6568 - 0.7540i
0.7706 + 0.6371i
0.7706 - 0.6371i
1.0000 + 0.0141i
1.0000 - 0.0141i

-0.6568 + 0.7540i
-0.6568 - 0.7540i
0.7707 + 0.6370i
0.7707 - 0.6370i
0.9999 + 0.0183i
0.9999 - 0.0183i

SUMMARY AND FUTURE WORK

In this paper, the efficacy of the initial-condition Eigensystem Realization Algorithm
for station keeping purposes was analyzed. A near-rectilinear halo orbit was taken as the
nominal, and orbital data was obtained via perturbing the nominal initial condition. From
this data, a linear, time-varying model was produced and was determined to be valid in
reproducing the nonlinear dynamics over one orbital period. Next, the validity of this iden-
tified model was established in the context of impulsive station keeping via the differential
corrections method for a fixed-time targeting problem. The identified model performed
with the same accuracy as the ground-truth for a variety of time-of-flights over one orbital
period. Additionally, the estimated Monodromy eigenvalues were seen to converge to the
true values as the perturbations went to near zero.

Future work includes utilizing more realistic orbital data for the modeling, testing dif-
ferent station keeping methods, and analyzing station-keeping around orbits other than
near-rectilinear halo orbits. Specifically, station keeping from continuous low-thrust ma-
neuvering is of interest. Other system identification tools must be utilized in this case since
there is an input to the system.
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