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This paper focuses on the problem of managing or tasking a network of sensors to accurately track a number

of objects while using information theoretic sensor performancemetrics. Themathematical formulation of optimally

tasking a group of sensors using the mutual information as a sensor utility measure is discussed along with the

relative merits of maximizing mutual information. The resulting sensor-tasking optimization problem is shown to be

combinatorial in nature, for which the computational complexity increases with an increase in the number of objects

as well as the number of sensors. Depending upon the number of objects and available sensors, appropriate

suboptimal approximations are presented to alleviate the computational complexity of the tasking problem. The

submodular property of the mutual information measure is used to provide guarantees on the optimality of different

approximations. Numerical simulations involving tracking ground objects with moving unmanned aerial vehicles

and tracking resident space objects with ground-based sensors are considered to show the efficacy of the developed

methods.

I. Introduction

I N TYPICAL filtering problems, the sensors are considered to be
passive while the process is dynamic. But, in many applications,

the measurements made by physical sensors are often influenced by
ambient conditions, environmental constraints, operating costs, and
constraints. Furthermore, most sensors (such as radars, telescopes,
range finders, and cameras) are directional in nature. Some sensors,
such as temperature and pressure, are also predominantly local in
nature and effective to within a small neighborhood of their location.
When the dynamic process leaves the field of view (FOV) of the
sensor, it becomes ineffective in observing the process. Many of the
limited FOV sensors, which are directional- and/or location-based
sensors, can often be reoriented to constantly keep the desired objects
within their field of view for longer periods of time, thereby signifi-
cantly improving the tracking performance. For example, in Ref. [1],
the authors studied the effectiveness of optimally locating mobile
atmospheric sensors in comparison to stationary sensors for tracking
the dispersion of a volcanic plume. Here, the mobile sensors are
actively positioned to track the evolving volcanic plume cloud, and
thereby deliver better measurements for the filter. In space object
tracking applications, where directional sensors such as cameras and
telescopes are often used, the sensor becomes ineffective in tracking
the satellites that leave its FOV and has to be reoriented using the
knowledge in the motion of the satellites. In Ref. [2], the authors
proposed an optimization problem to compute the right ascension
and declination angles for telescopes to efficiently track geosynchro-
nous space objects. In Ref. [3], the authors described the problem of
tracking geosynchronous satellites by reorienting the fixed ground

based sensors. It was observed that an optimal orienting strategy
outperforms simple heuristic scans.
The location, pointing direction, and other operational parameters

of the sensors are a function of the state of the unresolved objects that
is to be tracked or observed. Dynamical system models, historical
state estimates, and measurements of the process can be used to
predict the state of the object over time, along with the corresponding
state uncertainties. Using these predicted states and their uncertain-
ties, one is then able to optimize sensor parameters (e.g., orientation
and position) well ahead in time to make “better” observations. This
is because better measurements lead to better estimates of the under-
lying process. This process can be efficiently automated to track
multiple objects and is the very essence of sensor tasking considered
in this paper. In particular, by exploiting statistical measures of
information theoretic concepts in conjunction with high-fidelity
models of the physical and sensor systems, the dynamic optimization
of the sensor management process can have robust and physically
meaningful solutions.
A basic difficulty in optimizing sensor configurations is the prob-

lem of assessing the sensor performance that will result from the
sensor decisions before obtaining the sensor measurements. One of
thewidely used sensor informationmeasure is the Fisher information
matrix (FIM) ([4] p. 326). The FIM is conventionally used for its ease
in computation in conjunction with the Kalman filter and the
extended Kalman filter. The FIM in conjunction with the extended
Kalman filter (EKF) was used for sensor tasking applied to satellite
tracking [5]. Here, the problem was framed as a binary integer
optimization problem that can be solved very efficiently. In Ref. [6],
the authors provided an interesting development and computation of
information gain for tasking multiple observations; here, the infor-
mation gain is computed as the mean of the Kullback–Leibler (KL)
divergence measure. A similar expression using the concept of
mutual information is used in this paper. In addition to divergence
measures for information, the authors of Ref. [7] provided an inter-
esting application of space object tracking and custody maintenance
using the Dempster–Shafer theory for sensor tasking.
Related to optimal sensor tasking is the problem of optimal sensor

placement/selection, which is widely used in target tracking prob-
lems [8,9]. For instance, in Ref. [8], optimal sensor placement and
motion coordination of the mobile sensor networks are used to
address the target tracking problem. This is achieved by maximizing
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the Fisher information matrix. Tharmarasa et al. [9] studied the
problem of selecting a small subset of the available sensors in a large

network of sensors in order to trackmultiple targets. A search scheme
based on a combination of optimization methods and the FIM is used
to perform this task. Similarly, in the recent work of Refs. [10,11], the

authors proposed a clustering scheme for sensor networks to improve
the localization and tracking efficiency in the multitarget tracking
problem. In Ref. [12], under the assumption of Gaussian processes

for temperature sensor placement, the authors showed mutual infor-
mation to be a better choice than entropy for sensor placements.
Single-time-step sensor-tasking methods have been widely stud-

ied in the literature [5,13] because they are computationally attrac-
tive, whereas multi-time-step sensor-tasking approaches are often

computationally prohibitive (Ref. [13] p. 855). In this respect, the
main objective of this work is to realize an information theoretic
framework to task multiple sensors in order to accurately track

multiple objects over multiple time steps. In this work, it has been
assumed that the sensors are capable of target resolution and perfect
association. Hence, the problem of data association is considered to

be solved before sensor tasking. This assumption has been made to
address the challenging problem of sensor tasking in isolation, with-
out considering the effects of coupling it with the artifacts of a data
association process. With a perfect data association assumption,

a statistically consistent receding-horizon-based computational
approach is presented to evaluate the joint mutual information for
all objects, sensors, and time steps in the given horizon, building upon

our work in this area [14–17]. In Ref. [17], the single-time-step
sensor-tasking problem is studied using a suboptimal mutual infor-
mation cost as a sensor utility function. In Ref. [14], a formulation of

the problem as a mixed-integer nonlinear programming problemwas
presented. This paper presented a more comprehensive treatment of
the sensor-tasking problem that subsumed the aforementioned for-

mulations as special cases with extensive details in our solution. In
particular, the relative merits of using mutual information for sensor
tasking over the Fisher information have been demonstrated. Given

that the resulting tasking problem leads to a nonlinear NP-hard
integer programming problem, different suboptimal approximations
to the ideal sensor-tasking problem are presented to alleviate the

computational complexity of the original problem. The computa-
tional complexity of these approximations is discussed with respect
to the number of target objects and available sensors. The mutual
information-based sensor performance measure is shown to be sub-

modular and nondecreasing in nature, and these properties are used to
provide optimality bounds on the greedy algorithms (see theworks of
Nemhauser et al. [18] and Chekuri and Pal [19]). Finally, computa-

tionally attractive sequential methods are developed to further reduce
the computational burden associated with greedy algorithms. The
resulting sensor-tasking framework provides different alternatives to

solve the multistep sensor-tasking problem, depending upon the
number of target objects and sensors available, and is applicable to
various ground-, air-, or space-based target tracking problems.

Numerical simulations involving the tracking of multiple moving
targets [unmanned aerial vehicles (UAVs)] with fixed sensors and
tracking multiple space objects with a number of ground stations are

considered to validate the developed framework.
The paper is organized as follows: In Sec. II, the formal problem of

sensor tasking is introduced and the ideal optimization problem is
formalized using a generic sensor performance measure. In Sec. III,
the various sensor performance measures are discussed with specific

emphasis on the Fisher information matrix and mutual information.
Furthermore, computational approaches are developed to evaluate
these measures. In Sec. IV, the exact optimization problem from
Sec. II is reformulated by introducing decision variables into the

mutual information cost, and approximate methods are discussed to
solve this optimization problem. In Sec. V, we show that the mutual
information computed in Sec. III is submodular and nondecreasing.

We then proceed to leverage important results for maximizing sub-
modular functions to find the sensor task that maximizes mutual
information cost. Finally, in Sec. VI, numerical simulations are used

to illustrate the approaches discussed in this paper.

II. Problem Formulation

Let us consider the problem of trackingNo number of objects with
Ns configurable sensors over a period of NT time steps. The process
dynamics are described as

x�i�k�1 � f �i�
k

�
x�i�k

�
�G�i�

k ω�i�
k ; i � f1; 2; : : : ; Nog (1)

where x�i�k�1 ∈ Rni . The objects can be dynamic or stationary and can

have different process models f �i�
k that best describe the evolution of

their states. The objects are tracked using observations from an Ns

number of sensors with the following measurement models:

y�i;j�k�1 � h�j�
k�1

�
x�i�k�1; θ

�j�
k�1

�
� ν�j�k�1;

i � f1; 2; : : : ; Nog; j � f1; 2; : : : ; Nsg (2)

where y�i;j�k�1 ∈ Rmj and denotes the measurement from the ith object

made by the jth sensor at time step k� 1. The sensor model h�j�
k�1 can

represent a wide variety of sensors, ranging from a simple pinhole
approximation for a camera or more intricate models for optical
or electromagnetic sensors like Radio Detection and Ranging

(RADARS). The process noise sequence ω�i�
k ∼N

�
ω�i�
k : 0; Q�i�

k

�
and measurement noise sequence ν�j�k�1 ∼N

�
ν�j�k�1: 0; R

�j�
k�1

�
are

assumed to be mutually independent. Here, the notation N �x: μ; P�
defines a Gaussian probability density function (PDF) for random

vector x, withmean μ and covariancematrixP. θ�j�k�1 ∈ Rp represents

the configuration parameters of the sensor j at time step k� 1. When
the process and sensor models are linear, the system equations in

Eqs. (1) and (2) are represented as f �i�
�
x�i�k

�
≡ A�i�

k x�i�k and

h�j�
k�1

�
x�i�k�1; θ

�j�
k�1

�
≡H�i;j�

k�1

�
θ�j�k�1

�
x�i�k�1

When the extended Kalman filter is used, the nonlinear models in
Eqs. (1) and (2) are linearized about the most recent estimate. To this
end, we denote the linearized models as

A�i�
k∕k �

∂f i

�
x�i�k

�
∂x�i�k

�������
x�i�
k
�x̂�i�

k∕k

and

H�i;j�
k�1∕k

�
θ�j�k�1

�
�

∂hj

�
x�i�k�1; θ

�j�
k�1

�
∂x�i�k�1

�������
x�i�
k�1

�x̂�i�
k�1∕k

where x̂�i�k∕k is the a posteriori estimate at time k using measurements

up to time k. Similarly, x̂�i�k�1∕k is the a priori estimate at time k� 1

using measurements up to time k. The sensors are subjected to
constraints (such as limited FOV) at each time step k represented as

Csk
�
θ�1�k ; θ�2�k ; : : : ; θ�Ns�

k

�
≤ 0 (3)

The inequality in Eq. (3) represents the constraints on the sensor
configurations (modes or parameters). The initial conditions for the ith
object is modeled by a known PDF, which is generally assumed to be

Gaussian with a known mean x̂�i�0∕0 and covariance P�i�
0∕0. The object

states at the kth time step are collectively represented by the vector

Xk �
h
x�1�k ; x�2�k ; : : : ; x�No�

k

i
, whereas the sensormeasurements at the

same time step are represented asYk �
h
y�:;1�k ; y�:;2�k ; : : : ; y�:;Ns�

k

i
with

y�:;j�k �
h
y�1;j�k ; y�2;j�k ; : : : ; y�No;j�

k

i
, where y�i;j�k is the measurement

output when the jth sensor observes the ith object at time
step k. Here, we use the notation �x; y� to represent a vector
constructed by vertically concatenating the vectors x and y.
The colon “:” in the superscript or subscript denotes the entire set.
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The state for all objects up to time steps k, is represented as

X�1:No�
�1:k� �

h
x�1��1:k�;x

�2�
�1:k�; :::;x

�No�
�1:k�

i
, where x�i��1:k� �

h
x�i�1 ;x�i�2 ; :::;x�i�k

i
.

This grouping process assumes that the problem of associating
measurement to objects is already carried out. Similarly the measure-

ments are denoted as Y�: ;1:Ns�
�1:k� �

h
y�: ;1��1: k�; y

�:;2�
�1:k�; : : : ; y

�: ;Ns�
�1: k�

i
. Here,

y�:;j��1:k� represents all the measurements from the jth sensor up to time

k. Furthermore, the measurement can be grouped with respect to the

ith object and will be denoted as Y�i;:�
�1:k� �

h
y�i;:�1 ; y�i;:�2 ; : : : ; y�i;:�k

i
,

where y�i;: �k �
h
y�i;1�k ; y�i;2�k ; : : : ; y�i;Ns�

k

i
. Additionally, we use the

general notation X�A�
�B� to represent the vector of target states with

indices in set A and time steps in set B. Lastly, x̂�i�kp∕kq denotes the

estimate of the ith object state at time kp, which is conditioned on

the measurements up to time kq.
To optimize the sensor parameters, one has to determine the

performance or effectiveness of the sensors in reducing the uncer-
tainty associated with a group of objects over a finite time horizon
NT , even before the actual measurements are acquired. The optimal
sensor-tasking problem assumes the following as input: the models
for the objects and sensor, as well as their uncertainties, constraints,
and initial conditions. It is then required to generate the optimal
configurations for all sensors and for all time steps. To this end, the
relevant optimization problem can be informally posed as

max�
θ�j�
k

� J
�
X�1:T�;Y�1:T�

�
(4)

subject to:

8>>>>>><
>>>>>>:

x�i�k�1 � fi

�
x�i�k

�
�G�i�

k ω�i�
k ; x̂�i�0∕0; P

�i�
0∕0; i � 1; 2; : : : ; No

y�i;j�k�1 � hj

�
x�i�k�1; θ

�j�
k�1

�
� ν�j�k�1; j � 1; 2; : : : ; Ns

Csk
�
θ�1�k ; θ�2�k ; : : : ; θ�Ns�

k

�
≤ 0 k � 1; 2; : : : ; NT;NT final time step

(5)

Werefer to this notional optimization problemas the ideal problem.
The chosen sensor performance J in Eq. (4) is a function of all the
states of the objects and possible measurements. It is to be noted that
both the states and measurements are random variables with uncer-
tainties determined by the state dynamics, measurement models, and
initial conditions; whereas J is a deterministic value for a given set

of sensor parameters
n
θ�j�k

o
(j � 1; 2; : : : ; Ns and k � 1; 2; : : : ; NT).

In the next section, the specific sensor performance cost used is
described in detail; subsequently, the corresponding computational
aspects are also developed. The sensor performance cost in the
optimization problem of Eq. (4) is highly influenced by the filtering
method used. In this paper, we focus on sigma-point-based nonlinear
filters for their efficiency [20].

III. Sensor Performance

Appropriate performance measures need to be realized in order
to achieve meaningful tasking operations. In general, the dynamical
system models, measurement models, and filtering/estimation algo-
rithms influence the choice of the information measure. Also, the
choice of the appropriate informationmeasure (or sensor performance)
is often problem dependent. If one agrees that the PDF represents the
state uncertainty, then probabilistic or information theoretic measures
can be used to assess sensor performance. In this respect, various
sensor performance measures or information measures such as the
Fisher information matrix ([21] p. 39), the Kullback–Leibler diver-
gence [4,22], entropy ([4] p. 224), the Rényi information divergence
[23–25], and mutual information (MI) ([4] p. 231) have been used.

Among all these measures, the FIM has been widely used to compute
the sensor performance because the inverse of the FIM provides the
lower bound on the state error covariance matrix according to the
Cramer–Rao lower bound (CRLB).Assuming theCRLB inequality to
be satisfied, the FIM can be easily evaluated for linear system models
(such as in a Kalman filter [26]) or problems in which the linearized
models work reasonably well (as in the extended Kalman filter ([27]
p. 195)). Although the CRLB is achieved for linear systems, there are
no guarantees that it can be achieved for general nonlinear systems.
Furthermore, the FIM is an approximation of the information and can
be derived from the Taylor series expansion of the Kullback–Leibler
divergence measure (see Appendix A and Ref. ([21] p. 39) for more
details) about the estimate. As discussed in Appendix A, the FIM
defines the local curvature, and hence provides a local measure of the
information at a given estimate. On the other hand, the mutual infor-
mation provides a consistent information measure to measure sensor
performance and, unlike the FIM, it is a function of the entire proba-
bility density function rather than an estimate. To motivate the advan-
tages of using the mutual information measure, let us consider the
problem of localizing two objects with three sensors. The sensors are
directional and have the constraint that they cannot observe more than
one object at the same time. But, a single object can have multiple
sensors observing it. In other words, the sensor parameters θ in the
sensor model [Eq. (2)] would represent the direction (or angle in
this planar example). With this constraint and the limited number of
objects, the possible directions (or configurations) become a finite set.
The object uncertainties are modeled as a Gaussian PDF with means

and covariance matrices: μ�1���3;5�T , μ�2���7;5�T , P�1���9;5;5;9�,
and P�2���25;−10;−10;9�. The three sensors are located at

s1 � �0; 0�T , s2 � �5; 0�T , and s3 � �10; 0�T The model for the

jth sensor when observing the ith object, with state x�i� �
�x�i��1�; x�i��2��, is given by

y�i;j� �
� �����������������������������������������������������������������������������

�xv�1� − sj�1��2 �
�
x�i��2� − sj �2�

�
2

r
;

atan

	
x�i��2� − sj�2�
x�i��1� − sj�1�


�
T

� ωj

The Gaussian noise ωj has zero mean and covariance Rj as

R1 � R3 � diag

	�
102;

	
10π

180



2
�


and

R2 � diag

	�
52;

	
5π

180



2
�


The sensor-tasking problemhas a total of eight possibilities. The cost
can simply be evaluated for all these possible cases, and the best sensor
pairing is chosen.Tomake thedescription simple, the decisionvariables

v�i;j� are introduced to enumerate the eight possibilities. The decision

variable v�i;j� ∈ f0; 1g represents the tasking of the jth sensor to the ith
object when v�i;j� � 1, and it is zero otherwise. The constraint that one
sensor can observe only one object is transformed into the constraint

X2
i�1

v�i;j� � 1
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Note that the constraint

X2
i�1

v�i;j� ≤ 1

can be used to include the case where the jth sensor is apparently
not used.
Table 1 shows the exhaustive search of the decision variables that

satisfy the constraints of the sensor. Both the MI and the FIM are
evaluated for comparison. The FIM is computed using the EKF (as in
Refs. [5,28]) update equations, and the covariance in the MI is
computed using the Conjugate Unscented Transform (CUT) points
of 6th order, denoted as CUT6 points [20]. The expression used to
compute the MI is shown in the header of Table 1 as

log

	jPxjjPyj
jPj




Here, Px is the covariance of x � �x1; x2�T , Py is the covariance of y
(selectedmeasurement variables stacked as a columnvector), andP is

the joint covariance of x and y. Further details for theMI are described

in Sec. III.A. This example is just to illustrate the conventional sensor

tasking using the FIM with the EKF in comparison to the MI

computed by sigma points. It is observed from Table 1 that the

maximum of the MI and the FIM results in different configurations

of C1 and C6, respectively. To further investigate these configura-

tions, the a priori and a posteriori covariance ellipses for both targets

are shown in Fig. 1 for configurationsC1 andC6. In Fig. 1a, the EKF

tends to overestimate the a posteriori covariance for target 2, whereas

the CUT6 more properly captures the a posteriori covariance (this

has also been verified by using a Gauss–Hermite quadrature with

seven points in each dimension to compute the a posteriori covari-

ance). Similarly, Figs. 1c and 1d show the a priori and a posteriori

covariance ellipses for both the targets when the maximum FIM

configuration of C6 is selected. Here, the EKF tends to overestimate

the a posteriori covariances for both the targets, and hence over-

estimates the information in the system. It is evident that the estimates

in Fig. 1b are better than Fig. 1d. The mutual information in C1

computed by a higher-order cubature provides a better and consistent

measure for sensor selection. Hence, it is advantageous to choose a

Fig. 1 CUT6 vs EKF: reduction in covariance for cases C1 and C6.

Table 1 Exhaustive search for sensor tasking using MI and FIM

Configuration v�1;1� v�1;2� v�1;3� v�2;1� v�2;2� v�2;3� log

	jPxjjPyj
jPj



jFIMj

C1 1 0 0 0 1 1 1.748 0.4548

C2 1 1 0 0 0 1 1.5324 0.45811

C3 0 0 0 1 1 1 1.3824 0.0949

C4 1 1 1 0 0 0 1.3001 0.042179

C5 0 0 1 1 1 0 1.2643 0.26176

C6 1 0 1 0 1 0 1.2234 0.82134

C7 0 1 1 1 0 0 1.1579 0.19131

C8 0 1 0 1 0 1 0.9491 0.75882
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consistent nonlinear filter and information measure that can result in
efficient sensor configurations and consistent estimates.
In this respect, we use CUT-based sigma-point filters to accurately

evaluate mutual information while assuming the a posteriori density
function to be Gaussian. It should be mentioned that the higher-order
methods providemore accurate estimates of the covariancematrix for
the a posterioriGaussian density function as compared to the EKF or
the unscented Kalman filter [20,29]. In the following, the computa-
tional aspects of computing the MI are discussed. For ease of nota-
tion, the indices of the objects and measurements are dropped. The
information measures are first discussed for a single generic object
and a measurement vector over a period of one time step. These are
then extended to the case of multiple measurements and multiple
time steps.

A. Mutual Information

The mutual information at time step k� 1 for state xk�1 and
measurement yk�1 random variables is given by ([4] p. 231)

I�xk�1; yk�1�

�
ZZ

p�xk�1; yk�1� log
�

p�xk�1; yk�1�
p�xk�1�p�yk�1�


dxk�1 dyk�1 (6)

Furthermore, by using the conditional probability rule ([30] p. 98)

p�xk�1; yk�1� � p�xk�1jyk�1�p�yk�1�

the MI becomes [31]

I�xk�1; yk�1� � Eyk�1
�DKL�p�xk�1jyk�1�jjp�xk�1���

Here, DKL�pjjq� is the Kullback–Leibler divergence from PDF q to
PDF p. Note that the random vectors xk�1 and yk�1 can be any
random vectors x and y for which the PDFs p�x; y�, p�x�, p�y�,
p�xjy�, and p�yjx� exist. Unless otherwise stated, the logarithm is
taken with base e. Alternatively, by using the conditional probability
rule ([30] p. 98)

p�xk�1; yk�1� � p�yk�1jxk�1�p�xk�1�

the MI can also be derived as

I�xk�1; yk�1� � Exk�1
�DKL�p�yk�1jxk�1�jjp�yk�1���

where mutual information is defined as the reduction in uncertainty
([4] p. 231). Hence, maximizing theMIwill reduce the uncertainty in
the system. Consequently, the MI can be interpreted as the expected
Kullback–Leibler divergence of the a priori PDF p�x� from the a

posteriori PDF p�xjjy�. Hence, more the a posteriori PDF is differ-
ent from the a priori PDF, more is the information. In general, the
integrals in the MI have to be evaluated numerically, for example,
using Monte Carlo methods or quadrature methods.
For a linear system with Gaussian uncertainties, the MI takes a

simple analytical expression because the state PDF remains Gaussian
for all time steps. Let the joint Gaussian PDF for �xk�1; yk�1�T be
given as

p�xk�1; yk�1jIk� � N
	�

xk�1

yk�1

�
:

�
x̂k�1∕k

ŷk�1

�
;Σk�1∕k



;

Σk�1∕k �
�
Pk�1∕k Γk�1∕k

ΓT
k�1∕k Ξk�1∕k

�
(7)

with

x̂k�1∕k � E�xk�1�; ŷk�1 � E�yk�1�
Pk�1∕k � E��xk�1 − x̂k�1∕k��xk�1 − x̂k�1∕k�T �
Γk�1∕k � E��xk�1 − x̂k�1∕k��yk�1 − ŷk�1�T �

and

Ξk�1∕k � E��yk�1 − ŷk�1��yk�1 − ŷk�1�T �

Here, the expectations are with respect to the a priori PDF

p�xk�1jIk� � N �xk�1: x̂k�1∕k; Pk�1∕k�

Here, Ik is the set ofmeasurements up to time k.When the process and
measurement models are nonlinear, the expectation integrals can be
computed numerically using quadratures as described in Ref. [20].
Γk�1∕k is the cross covariance of the state and measurement random

vectors,Ξk�1∕k is the covariance for themeasurement random vector,

and Pk�1∕k is the a priori state covariance. The mean and covariance

for the a posteriori PDF

p�xk�1jIk; yk�1� � N �xk�1: x̂k�1∕k�1; Pk�1∕k�1�

are given by the Kalman filter update equations or, equivalently, by
computing the conditional Gaussian PDF [32] in Eq. (7) as

x̂k�1∕k�1 � x̂k�1∕k � Kk�1�yk�1 − ŷk�1�
Pk�1∕k�1 � Pk�1∕k − Kk�1ΓT

k�1∕k

andKk�1 � Γk�1∕kΞ−1
k�1∕k. The measurement covariance Ξk�1∕k and

cross covariance Γk�1∕k are implicitly a function of the sensor param-

eters because

Ξk�1∕k � Hk�1∕kPk�1∕kH
T
k�1∕k � Rk�1

and Γk�1∕k � Pk�1∕kH
T
k�1∕k for a linear measurement model

Hk�1 ≡Hk�1�θk�1�, which is a function of the sensor configurations.
The MI

I�xk�1; yk�1� �
1

2
log

	jPk�1∕kjjΞk�1∕kj
jΣk�1∕kj




is then simplified as

I�xk�1; yk�1� �
1

2
log

	 jPk�1∕kj
jPk�1∕k − Γk�1∕kΞ−1

k�1∕kΓ
T
k�1∕kj




� 1

2
log

	 jΞk�1∕kj
jΞk�1∕k − ΓT

k�1∕kP
−1
k�1∕kΓk�1∕kj



(8)

where the last two expressions of Eq. (8) are derived using the
determinant of the joint covariance as

jΣk�1∕kj � jPk�1∕k − Γk�1∕kΞ−1
k�1∕kΓ

T
k�1∕kjjΞk�1∕kj

or (Ref. [33] fact 8.13.36)

jΣk�1∕kj � jΞk�1∕k − ΓT
k�1∕kP

−1
k�1∕kΓjjPk�1∕kj

This expression is similar to the mean of the Kullback–Leibler diver-
gence measure as developed in Ref. [6]. The MI is a measure of the

reduction of uncertainty, i.e., the reduction from jPk�1∕kj to jPk�1∕k−
Γk�1∕kΞ−1

k�1∕kΓ
T
k�1∕kj or from jΞk�1∕kj to jΞk�1∕k−ΓT

k�1∕kP
−1Γk�1∕kj.

The former notion is the reduction in the covariance of the state PDF,
whereas the latter is the reduction in the covariance of the measure-
ment, and thereby maximizing the likelihood of the measurement.
This development of mutual information for linear system models
provides valuable insights into computing the mutual information
for nonlinear system models. If the approximate joint Gaussian PDF
of states and measurements can be computed efficiently, then the
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equation in Eq. (8) provides analytical expressions to compute theMI.

With this motivation, we propose to use high-order sigma points

[20,34–36] to approximate the joint PDF as Gaussian. Note that, in

general, the MI in Eq. (8) can contain any state and measurement

variables over multiple time steps and objects. In the next section, we

provide numerical methods to compute the joint mutual information

for multiple objects, measurements, and time steps.

B. Computing Joint Mutual Information over Multiple Time Steps

Optimizing sensor parameters well ahead of time requires the joint

MI of all objects and sensors over multiple time steps. Assuming a

Gaussian approximation to this joint PDF of object states and sensor

measurements, it suffices to only compute the joint mean and covari-

ance. Given the state estimates x̂�i�0∕0 and covariance P�i�
0∕0 for each

object at time step k � 0, the objective is to compute the joint mutual

information using all the object states and themeasurements up to the

final time step NT . Let

p
�
X1:No

�0:NT �;Y
�1:No;1:Ns�
�0:NT �

�

represent the joint Gaussian PDFof all the objects, over all time steps,

and all the corresponding measurements. Often, the objects can be

assumed independent when the objects can be perfectly resolved

frommeasurements and are not controlled with respect to each other.

This assumption reduces the joint MI

I
�
X1:No

�0:NT �;Y
�1:No;1:Ns�
�0:NT �

�
as the sum of the MI of individual objects:

I
�
X1:No

�0:NT �;Y
�1:No;1:Ns�
�0:NT �

�
�

XNo

i�1

I
�
X�i�

�0:NT �;Y
�i;1:Ns�
�0:NT �

�
(9)

The problem then reduces to computing p
�
X�i�

�0:NT �;Y
�i;1:Ns�
�0:NT�

�
for

each object individually, which in turn reduces to computing the

joint mean and covariance of each object with its corresponding

measurements over all time steps. As the computational procedure

is similar to all objects, the superscript i is dropped and the process is
described for a generic object. We first describe mutual information

for a linear system over all time steps k � 0; 1; : : : ; NT and meas-

urement variables j � 1; 2; : : : ; Ns. Given the PDF for the initial

state as x0 ∼N �x0: x0∕0; P0∕0�, the joint PDF p
�
X�0:NT�;Y�0:NT �

�
is

computed by the joint transition matrix F as

h
X�0:NT �;Y

�1:Ns�
�1:NT �

i
T � F

h
x0;W�0:NT−1�;V

�1:Ns�
�1:NT �

i
T

where the matrix F is derived by recursively applying the

dynamical system matrices A�i�
k and H�i;j�

k�1 for k � 0; 1; : : : ; NT.

The initial condition x0, the process noise sequence W�0:NT−1� �
�ω0;ω1; : : : ;ωNT−1�, and the measurement noise sequence

V1:Ns

�1:NT � �
h
ν�1��1:NT �; ν

�2�
�1:NT �; : : : ; ν

�Ns�
�1:NT �

i
were assumed to be mutually independent. Hence, the PDF

p
�
x0;W0:NT−1;V

1:Ns

�1:NT �
�
is completely determined as the product

of the PDFs for each random variable. Under the linear map F,

the joint PDF p
�
X�0:NT �;Y

�1:Ns�
�1:NT �

�
is Gaussian and is directly com-

puted from p
�
x0;W�0:NT−1�;V

1:Ns

�1:NT �
�

using the transformation

of probabilities ([37] p. 34). Alternatively, the mean and covariance

matrix of
h
X�0:NT �;Y

�1:Ns�
�1:NT �

i
T
are computed as

μ � E

2
4X�0:NT�

Y�1:Ns�
�1:NT �

3
5 � F

2
64 x̂0∕0

0

0

3
75;

Σ � E

0
B@
2
4X�0:NT �

Y�1:Ns�
�1:NT �

3
5 − μ

1
CA
0
B@
2
4X�0:NT �

Y�1:Ns�
�1:NT �

3
5 − μ

1
CA

T

� F

2
64
P0∕0 0 0

0 Q�0:NT−1� 0

0 0 R�1:Ns�
�1:NT �

3
75FT (10)

where Q�0:NT−1� is the block diagonal matrix with the matrices

�Q0; Q1; : : : ; QNT−1� along the main diagonal. Similarly, R�1:Ns�
�1:NT � is

the block diagonal matrix of all the measurement noise covariances

from time step 1 to NT . Similar to the linear system, for a nonlinear

system as in the Eqs. (1) and (2), the system of equations is ex-

pressed ash
X�0:NT �;Y

�1:Ns�
�1:T�

i
T � F

�
x0;W�0:NT−1�;V

�1:Ns�
�1:NT �

�
Given the initial state and noise variables, the nonlinear map F �:�
generates all the state andmeasurement variables. The nonlinear map

is similar to the linear map, except thatF is now a nonlinear implicit

function of the initial state and noise variables. The mean and

covariance are then computed numerically using sigma points as

μ � E

2
4X�0:NT �

Y�1:Ns�
�1:NT �

3
5 � E

h
F
�
x0;W�0:NT−1�;V

�1:Ns�
�1:NT �

�i

�
XN
q�1

wqF
�
x�q�0 ;W�q�

�0:NT−1�;V
�1:Ns�;q
�1:NT �

�
(11)

Σ � E

0
B@
2
4X�0:NT �

Y�1:Ns�
�1:NT �

3
5 − μ

1
CA
0
B@
2
4X�0:NT �

Y�1:Ns�
�1:NT �

3
5 − μ

1
CA

T

�
XN
q�1

wq

�
F
�
x�q�0 ;W�q�

�0:NT−1�;V
�1:Ns�;q
�1:NT �

�
− μ

�

×
�
F
�
x�q�0 ;W�q�

�0:NT−1�;V
�1:Ns�;q
�1:NT �

�
− μ

�
T

(12)

where the N sigma points or quadrature pointsn�
x�q�0 ;W�q�

�0:NT−1�;V
�1:Ns�;q
�1:NT �

�
; wq

o
are generated from the distribution

N
	h

x0;W�0:NT−1�;V
�1:Ns�
�1:NT �

i
T
: �x̂0∕0; 0; 0�T;

diag
�
P0∕0; Q�1:NT−1�; R

�1:Ns�
�1:NT �

�


In the absence of process noise, or when the process noise can be

considered to be small (as is often the case for space object

motion), the computational complexity is reduced significantly.

The uncertainty in the system is only due to initial conditions and

measurement noise. Hence, the number of sigma points required is

also reduced. Using the index i for a generic object, the joint covari-
ance matrix Σ over all measurements and time steps in Eq. (12) is

expressed as Σ
�i;1:Ns�

�0:NT �
which can further be partitioned to separate the

state and measurement subblock matrices as
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Σ
�i;1:Ns�

�0:NT �
�

2
64 P�i�

�0:NT � Γ�i;1:Ns�
�0:NT �

Γ�i;1:Ns�T
�0:NT � Ξ�i;1:Ns�

�0:NT �

3
75 (13)

Themutual information in Eq. (8) for the ith object is then given as

I
�
X�i�

�0:NT �:Y
�i;1:Ns�
�0:NT �

�

� 1

2
log

8><
>:

���P�i�
�0:NT �

������P�i��0:NT � − Γ�i;1:Ns�
�0:NT �

�
Ξ�i;1:Ns�
�0:NT �

�−1�
Γ�i;1:Ns�
�0:NT �

�
T
���
9>=
>;

(14)

� 1

2
log

8><
>:

���Ξ�i;1:Ns�
�0:NT �

������Ξ�i;1:Ns�
�0:NT � −

�
Γ�i;1:Ns�
�0:NT �

�
T
�
P�i;1:Ns�
�0:NT �

�−1
Γ�i;1:Ns�
�0:NT �

���
9>=
>; (15)

The measurement covariance Ξ�i;1:Ns�
�0:NT � and the cross covariance

Γ�i;1:Ns�
�0:NT � are functions of the sensor configurations. In this case, theMI

inEq. (15) is easily computed for a subset of sensors and time steps by
only using the relevant rows and columns in the joint covariance
matrix in Eq. (13). This helps to perform a straightforward exhaustive
search to find the best subset of sensors tomaximize theMI over time.
This problem of optimizing sensor configurations is described in
further detail in the next section. It should be noticed that the accurate
computation of theMI requires the accurate computation of themean
and covariance for nonlinear models. In this respect, we prefer to use
higher-order cubature/quadrature methods [20].

IV. Sensor Tasking

Embedded in expressions (14) and (15) are the sensor configura-
tion parameters. These sensor configuration parameters θ�j�k ∈ Rp for
k � 1; 2; : : : ; NT in the measurement model [Eq. (2)] influence the
measurements and the sensor noise, and hence influence the mutual
information. The objective of the sensor-tasking process is to then
find the best combination of sensor parameters to maximize the
information in the system. These configuration parameters can be
binary, integer, discrete (such as a simple on/off or other operating
modes), and even continuous (such as orientation, position). In this
paper, we choose to express all the configuration parameters as
discrete. All the continuous sensor parameters are appropriately
discretized over their respective domains. For a given sensor, once
all the configuration parameters are uniformly expressed as discrete
values, we construct the tensor product of the parameter values to
enumerate all possible configurations for the sensor. We denote this

set as S�k�
j for the jth sensor at time step k. The sensor is then a

constraint to operate in any of these configurations θ�j�k ∈ S�k�
j .

Furthermore, we denote the index for the set S�k�
j as s�j;k�. The

complete set of sensor configurations is denoted as E �∪k

�
∪j Sk

j

�
for j � 1; 2; : : : ; Ns and k � 1; 2; : : : ; NT . We assume that sets S�k�

j

and E are ordered with respect to their indices.
Every combination of sensor parameter states θ�j�k uniquely

configures the jth sensor at time step k. To this end, we consider

this configuration to be a new sensor, h�j�
�
x�i�k ; θ�j�k

�
≡ hs�j;k�

�
x�i�k

�
in Eq. (2), when θ�j�k takes the value in S�k�

j corresponding

to the index s�j;k�. For simpler notation purposes, we also denote

the sensor models as hj 0
�
x�i�k

�
, where j 0 is the index for the set E,

with j 0 � 1; 2; : : : ; Ns 0 and Ns 0 � jEj. As E is the set of all configu-
rations for all sensors over all time steps, we consider the index of E
to be incremented first along sensors and then time steps. The
problem is then to select an appropriate set of sensors in set E, which
is subject to user defined constraints. Alternatively, one can
use binary variables to select/deselect a sensor.Now, the optimization
problem of maximizing the information or sensor utility cost
becomes a nonlinear binary-integer programming problem. Hence,

integer nonlinear programming solvers [38] are required tomaximize

the information measure. These solvers can be computationally

expensive and sensitive to initial conditions, resulting in solutions

that are often local maxima. We first develop the exact sensor

optimization problem in terms of a nonlinear binary-integer program

for completeness and to illustrate the sensor-tasking problem. As the

exact optimal solution is often intractable, we then proceed to develop

approximate methods to alleviate the computational complexity and

generate near-real-time solutions. Furthermore, in Sec. V, we show

that the MI is submodular, and we leverage greedy heuristics with

known suboptimal bounds.

A. Maximizing Mutual Information

In this section, the MI is transcribed into an objective function for

optimization using binary integer variables. These variables select or

deselect sensors in setE. TheMI cost function inEq. (9) [andEq. (14)]

is modified to include the effect of the decision variables v�i;j
0�

k as

max
v�i;j

0 �
k

:
XNo

i�1

I

	
X�i�

�0:NT �; v
�i;1:N 0

s�
�0:NT � Y

�i;1:N 0
s�

�0:NT �



(16)

subject to:Av ≤ b; Cv � d (17)

v�i;j
0 �

k ∈ f0; 1g (18)

1 ≤ i ≤ No; 1 ≤ j 0 ≤ N 0
s; 0 ≤ k ≤ NT (19)

where

v�i;1:N
0
s�

�0:NT � �
n
v�i;j

0�
k j1 ≤ j 0 ≤ N 0

s; 0 ≤ k ≤ NT

o
is the collectionof all decisionvariables for object iover all time steps,

and the vector v �
h
: : : ; v�i;j

0 �
k ; : : :

i
T
. v�i;j

0�
k is introduced to selec-

tively remove or add the corresponding sensor for an object at a

particular time as

v�i;1:N
0
s�

�0:NT � Y
�i;1:N 0

s�
�0:NT � �

�
v�i;1�0 y�i;1�0 ; v�i;2�0 y�i;2�0 ; : : : ; v�i;N

0
s�

0 y�i;N
0
s�

0|�������������������������������{z�������������������������������}
k�0

; · · · ;

v�i;1�T y�i;1�T ; v�i;2�T y�i;2�T ; : : : ; v�i;N
0
s�

T y�i;N
0
s�

T|�������������������������������{z�������������������������������}
k�NT

�
(20)

The objective function I in Eq. (16) is to be interpreted as the

information in all the object states and measurements over the time

period of zero to NT . The binary variables v �
n
v�i;j

0�
k

o
are used to

include or remove sensors from the vector [Eq. (20)], and hence from

computation of themutual information.Whenv�i;j
0�

k � 0, then object i
is not observedwith sensor j 0 at time k; i.e., themeasurement variable

y�i;j
0 �

k is removed, and it has no effect on the mutual information cost.

Constraint matrices A, b, C, and d are used to model operational

constraints and budgets. For example, operational constraints

can include switching off sensors when visibility or observability

is low, and operation budgets can include the cost of using a sensor

at different times. Note that, in many problems, the variable v�i;j
0�

k

may not be independent. For example, when a sensor has multiple

operatingmodes, only onemode/configuration can be used at a single

time step. These constraints can be enforced by using matrices C and

d. Further details and applications are described in Sec. V.
The effect of removing sensors, when computing the mutual

information, translates to removing the corresponding rows and

columns of the sensor in the joint covariance matrix. Alternatively,

the decision variables v can also be introduced directly into the

measurement covariance and cross-covariance matrices of Eq. (13)

in such a way so as to negate the effect of the sensor in computing

the MI. Specifically, Ξ�i� and Γ�i� of Eqs. (13) and (14) are par-

titioned as
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Γ�i� �
h
Γ�i�
1 --

--
-

Γ�i�
2 --

--
-

: : : --
--
-

Γ�i�
k --

--
-

: : : --
--
-

Γ�i�
T

i
(21)

Γ�i�
k �

2
666666666666664

v�i;1�k Γ�i;1�
�1;k� v�i;2�k Γ�i;2�

�1;k� · · · v�i;N
0
s�

k Γ�i;N 0
s�

�1;k�
� � � � � � � � � � � � � � � � � � ��
v�i;1�k Γ�i;1�

�2;k� v�i;2�k Γ�i;2�
�2;k� · · · v�i;N

0
s�

k Γ�i;N 0
s�

�2;k�
� � � � � � � � � � � � � � � � � � ��

..

. ..
.

· · · ..
.

� � � � � � � � � � � � � � � � � � ��
v�i;1�k Γ�i;1�

�NT;k� v�i;2�k Γ�i;2�
�NT;k� · · · v�i;N

0
s�

k Γ�i;N 0
s�

�NT;k�

3
777777777777775

(22)

and

Ξ�i�
h
Ξ�i�
�1� --

--
-

Ξ�i�
�2� --

--
-

: : : --
--
-

Ξ�i�
�k� --

--
-

: : : --
--
-

Ξ�i�
�NT �

i
(23)

Ξ�i�
�k� �

2
66666666666666664

v�i;1�1 v�i;1�k Ξ�1;1�;i
�1;k� v�i;1�1 v�i;2�k Ξ�1;2�;i

�1;k� · · · v�i;1�1 v�i;N
0
s�

k Ξ�1;N 0
s�;i

�1;k�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
v�i;2�1 v�i;1�k Ξ�2;1�;i

�1;k� v�i;2�1 v�i;2�k Ξ�2;2�;i
�1;k� · · · v�i;2�1 v�i;N

0
s�

k Ξ�2;N 0
s�;i

�1;k�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

..

. ..
.

· · · ..
.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
v�i;N

0
s�

T v�i;1�k Ξ�N 0
s;1�;i

�NT;k� v�N
0
s;i�

T v�i;2�k Ξ�N 0
s;2�;i

�NT;k� · · · v�i;N
0
s�

T v�i;N
0
s�

k Ξ�N 0
s;N

0
s�;i

�NT;k�

3
77777777777777775

(24)

whereΓi;j 0
�ki;kj 0 � is the cross covariance of the ith object state at time step

ki with the measurement output of the j 0th sensor at time step kj 0 .

Similarly, Ξ�j 0
1
;j 0
2
�;i

�k1 ;k2� is the covariance of the j 01th sensor measurement

(of the ith object) at time step k1 with the j 02th sensor measurement

(of the ith object) at time step k2. Note that the coefficient of Ξ
�j 0

1
;j 0
2
�;i

�k1 ;k2�
is one when j 01 � j 02 and k1 � k2, and it is v

�i;j 0
1
�

k1
v
�i;j 0

2
�

k2
otherwise.

This is important so as to notmake the determinant zerowhen a sensor
is removed, as well as to consistently compute the rightMI cost when
the sensor is selected or deselected.On substituting Eqs. (22) and (24)
into the expression for the MI in Eq. (15) and then expanding the
determinant, the MI is transformed into a function of the decision
variables v of the form

I�Det�: max
v

XNo

i�1

� jΞ�i�j
jΞ�i� − �Γ�i��T�P�i��−1Γ�i�j


�

XNo

i�1

pi�v�
qi�v�

� p�v�
q�v�
(25)

subject to:Av ≤ b; Cv � d (26)

v�i;j
0 �

�k� − �v�i;j 0��k� �2 � 0 (27)

1 ≤ i ≤ No 1 ≤ j 0 ≤ Ns 0 ≤ k ≤ NT (28)

where the logarithm in Eq. (15) has been dropped without loss of

optimality. The constraint v�i;j
0�

�k� −
�
v�i;j

0�
�k�

�
2 � 0 is used to enforce

the binary constraint for the decisionvariables.Note thatpi�v�,qi�v�,
p�v�, and q�v� are polynomials in the variables v. Also, jP�i�j is
a constant with respect to the decision variables v. This form
of optimization can be solved by special numerical solvers such
as GloptiPoly [39], which considers a series of semi-definite pro-
gramming (SDP) relaxations to obtain the global optimum solution.
But, such relaxations for higher-order polynomials lead to increased
computational complexity for each SDP relaxation. Alternatively,

polynomial solvers such as Bertini™ can be used [40]. In most cases,

the determinant in Eq. (25) exponentially increases the order of the

polynomials. Even though there might be a few binary variables, the

degree of the polynomials can be large when the number of states in

the process model or measurement model are high. Hence, these

numerical methods are only effective for low-dimensional systems to

find the global maximum solution. In this regard, the exact optimi-

zation problem in Eq. (25) is only used to illustrate the ideal sensor-

tasking optimization problem and to help develop and motivate

greedy heuristics in Sec. V that can achieve suboptimal solutions to

this ideal sensor-tasking problem.

B. Sequential in Time

In this sequential strategy, the optimization problem is solved only

for the variables at the current time step. The optimization problem at

the subsequent time step considers all the optimized variables up until

the previous time step as fixed. The process continues up to the final

time step NT . The greedy time strategy only optimizes the informa-

tion for a specific time step, and hence the number of configurations

are reduced to 2No×Ns for a single time step. The computational cost is

proportional toNT × 2No×Ns for all time steps. The sequential in time

optimization problem at time step k can be framed as

max�
vi;j

0
k

� I�X�0:NT �: v�0: k�Y�0: k�j
�
vi;j

0
0

�	;
�
vi;j

0
1

�	; : : : ; �vi;j 0k−1
�	; �vi;j 0k�1

� � 0; : : : ;
�
vi;j

0
NT

� � 0� (29)

subject to:Akvk ≤ bk; Ckvk � dk

v�i;j
0 �

�k� ∈ f0; 1g; 1 ≤ i ≤ No 1 ≤ j 0 ≤ N 0
s (30)

where
�
vi;j

0
0

�	; �vi;j 01

�	; : : : ; �vi;j 0k−1
�	

are the fixed decision

variables at time steps 0; 1; : : : ; k − 1, respectively. As the

sequential in time strategy progresses forward in time, the variables
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�
vi;j

0
k�1

�
;
�
vi;j

0
k�2

�
; : : : ;

�
vi;j

0
NT

�
are set to zero for all 1 ≤ i ≤ No and

1 ≤ j ≤ N 0
s. The conditioning in Eq. (29) is to be interpreted

as known or constant values while computing the joint mutual

information. In the case of a constraint in which a sensor can

only observe a single target at any particular time, the possible

configurations reduce toNT × NN 0
s

o . Note that the constraint matrices

Ak, Ck, bk, and dk in Eq. (30) are constraints for a given time

step k, and are not the general constraint matrices A, V, b, and d
in Eq. (26).

C. Sequential in Sensors

Assuming that the tasking has been done up to j − 1 sensors, the

optimization for the jth sensor is framed as

max
fv�: ;j 0 �

0:NT
g
I
�
X�1:NT �: v

�: ;j 0�
�0:NT �Y

�: ;j 0�
�0:NT �

���nv�: ;1�0:NT

o	
;
n
v�: ;2�0:NT

o	
; : : : ;

n
v�: ;j

0−1�
0:NT

o	
;

n
v�: ;j

0�1�
0:NT

o
� 0; : : : ;

n
v�: ;N

0
s�

0:NT

o
� 0

�
(31)

subject to:Aj 0v
�: ;j 0�
0:NT

≤ bj 0 ; Cj 0v
�: ;j 0�
0:NT

� dj 0

v�i;j
0�

k ∈ f0; 1g; 1 ≤ i ≤ No; 0 ≤ k ≤ NT (32)

n
v�: ;j

0�
0:NT

o
�

�n
v�1;j

0�
0 ; v�2;j

0�
0 ; : : : ; v�No;j

0�
0

o
; · · · ;

n
v�1;j

0 �
NT

; v�2;j
0 �

NT
; : : : ; v�No;j

0�
NT

o�
(33)

The MI cost in Eq. (31) is computed by considering all the

previous sensor assignments
n
v�: ;1�0:NT

o	
;
n
v�: ;2�0:NT

o	
; : : : ;

n
v�: ;j

0−1�
0:NT

o	
as

knowns/constants and having the remaining variable set as v�i;u�k � 0

∀ j 0 � 1 ≤ u ≤ Ns, 1 ≤ i ≤ No, and 1 ≤ k ≤ NT . Equivalently,

the corresponding columns in the joint covariance matrix can

be deleted in Eqs. (22) and (24) when evaluating the MI. It can

be seen that the optimization at each iteration has only No × NT

variables. The total number of configurations possible are

Ns × 2No×NT . But, with the constraint that a sensor can observe only

one target at a particular time, the number of configurations reduces

to Ns × NNT
o .

D. Sequential in Objects

Yet another approach is to be sequential in objects. The objects can

be ordered in decreasing order of their state uncertainties or by a user-

defined priority order. The sensor-tasking problem is then solved

for each object in the priority order while considering the tasking

solutions of the previous objects as fixed. An additional penalty cost

is often necessary to avoid the case where all the sensor resources are

used up in the tasking problems of the first few objects in the priority

list. The optimization problem for the ith object is given as

max
v�i;: ��0:NT �

I
�
X�i�

�0:NT �: v
�i;: �
�0:NT �Y

�i;: �
�0:NT �

���nv�1;: ��0:NT �
o	
;

n
v�2;: ��0:NT �

o	
; : : : ;

n
v�i−1;: ��0:NT �

o	
;n

v�i�1;: �
�0:NT �

o
� 0; : : : ;

n
v�No;: �
�0:NT �

o
� 0

�
− λTϕ

�
v�i;: ��0:NT �

�
(34)

subject to:Aiv
�i;: �
0:NT

≤ bi; Civ
�i;: �
0:NT

� di

v�i;j
0 �

k ∈ f0; 1g; 1 ≤ j 0 ≤ N 0
s; 0 ≤ k ≤ NT (35)

n
v�i;: �0:NT

o
�

hn
v�i;1�0 ; v�i;2�0 ;: : : ; v�i;N

0
s�

0

o
;: : : ;

n
v�i;1�NT

; v�i;2�NT
;: : : ; v�i;Ns�

NT

oi
(36)

The penalty in the information cost ϕ
�
v�i;: ��0:NT �

�
is introduced to

minimize the number of sensors allocated to the ith object, hence
sparing some sensors for the next object. The penalty assumed can be
taken as

ϕ
�
v�i��0:NT �

�
�

2
4XN 0

s

j 0�1

v�i;j
0�

0 ;
XNs

j 0�1

v�i;j
0�

1 ; : : : ;
XN 0

s

j 0�1

v�i;j
0�

NT

3
5T

to represent the number of sensors used in each time step. Note that

λ ∈ RNT is the desired scaling vector that can be used to relatively
weight the number of sensors used at different time steps. Alterna-
tively, another approach would be to minimize the number of sen-
sors used while maintaining the information above a user-defined
threshold:

min :
XN 0

s

j 0�1

v�i��0:NT � (37)

subject to: I
�
X�i�

�0:NT �: v
�i�
�0:NT �Y

�i�
�0:NT �jv

�i−1�
�0:NT �;

v�i−2��0:NT �; : : : ; v
�1�
�0:NT �

�
≥ Iϵi (38)

where Iϵi is the information threshold used to specify the minimum

amount of information to be gained for each object. A lower
threshold would lead to fewer sensors tasked to object i, hence
making sensors available for the remaining objects. The number of
possible configurations for the sequential in objects approach

is No × 2N
0
s×NT .

Often in these sequential strategies, an exhaustive search might be
computationally attractive because computing theMI over the search
space of decision variables can be effectively parallelized with ease.
In very large-scale problems, these strategies can be combined to
make the sensor-tasking problem more tractable. It is emphasized
that the choice of approximation is often problem dependent.

E. Mutually Independent Measurements

To further ease computational complexity, the sensormeasurement
states are assumed to be mutually independent at the current time
step. This assumption is generally not valid because themeasurement
states are correlated through the object states. Nevertheless, for large-
scale problems, the resultant cost function is very attractive because it
can be solved efficiently using linear binary integer programming
solvers that use branch-and-bound methods. With a single time
step moving horizon (i.e., NK � 1), the optimization problem
becomes

max�
vi;j

0
k

�XNo

i�1

XNs

j 0�1

v�i;j
0�

�k� I
�
x�i�k : y�i;j

0�
�k�

�
(39)

where

I
�
x�i�k : v�i;j

0�
�k� y�i;j

0�
�k�

�
� v�i;j

0�
�k� I

�
x�i�k : y�i;j

0�
�k�

�
because, when v�i;j

0�
k � 0, the information becomes

I
�
x�i�k : v�i;j

0 �
k y�i;j

0�
�k�

�
� I

�
x�i�k :∅

�
� 0

When solving the optimization in Eq. (39) at time step k with
NK � 1, the estimates x̂k−1∕k−1 and Pk−1∕k−1 of all the objects at

time k − 1 are known. In Ref. [5], a similar binary integer program-
ming was solved using the FIM as the sensor performance cost. Once
the optimization problem is solved for time step k, the sensors are
configured andwait formeasurements at time k. The estimates for the
objects that were tasked to be observed are updated at time kwith the
newly available measurements. For objects with no measurements,
the a priori estimates simply become the a posteriori estimates,
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and a new optimization problem is solved for time step k� 1. Note
that all the measurements from all the sensors over time steps are
correlated through the state dynamics for an object. Although this
assumption disregards this correlation, it provides a computationally
attractive approach. Note that problem (39), when arranged in
table, is similar to the information table in Refs. [3,5]. In Ref. [3],
the authors described a sensor-tasking problem by first constructing
the information table over multiple time steps. The auction algorithm
was then used to select the elements of this information table. It is to
be noted that, in an ideal sensor-tasking problem, the information
table over time cannot be constructed before the sensor task. This is
because the information over time is dependent on the sensor task,
and hence is a nonlinear problem. But, as in Refs. [5,3], to make the
optimization problem linear, the sensor tasking and information cost
are decoupled. In this paper, we choose to generate a suboptimal
solution to the exact nonlinear optimization problem.We describe the
greedy search approach in the next section.

V. Greedy Search

The optimal sensor-tasking problem is known to be NP hard and is
essentially a combinatorial problem. This optimization problem has

No × N 0
s × NT variables, and hence 2No×N 0

s×NT possible configura-
tions. This is computationally prohibitive for practical applications.
In this section, we address this computational complexity by leverag-
ing the submodular property of the MI to design greedy approaches.
We first start by providing a brief review of submodular functions,
and then we show that the MI in Eq. (14) [and Eq. (15)] is in
fact submodular and nondecreasing. We then state the suboptimal
bounds for the greedy approaches used to maximize submodular
functions.
Definition 1, submodular functions (Nemhauser et al. [18]):Given

a finite set E � fs1; s2; : : : ; sNg, a real-valued function f�S� for S ⊂
E is submodular if it satisfies any one of the following equivalent
conditions:
1) f�A� � f�B� ≥ f�A ∪ B� � f�A ∩ B� for all A;B ⊂ E.
2) Δe�A� ≥ Δe�B� for all A ⊂ B ⊂ E and e ∈ E − B where, for

any S, Δe�S� � f�S ∪ feg� − f�S�.
Definition 2, nondecreasing functions (Nemhauser et al. [18]): A

real-valued functionf�S� forS ⊂ E is nondecreasing if it satisfies any
one of the following equivalent conditions:
1) f�B� ≥ f�A� for all A ⊂ B ⊂ E.
2) Δe�S� ≥ 0 for all S ⊂ E and e ∈ E − S where, for any

S, Δe�S� � f�S ∪ feg� − f�S�.
Submodular functions are especially interesting because they

behave as concave functions. Together with the nondecreasing prop-
erty, these functions can be maximized by simple greedy search
approaches. In this regard, we first show that the MI, in Eq. (14), is

submodular andnondecreasing.Wedefinef�i�MI�A� � I
�
X�i�

�0:NT �;Y
�i�
A

�
for a single object, where A ⊂ E is the set of active or selected sensor
configurations (or, equivalently, the set of indices sj;k). Because every
combination of sensor configurations is considered a new sensor,
selecting a configuration corresponds to selecting the corresponding
sensor in set E. When a sensor configuration is selected (i.e., sj;k ∈ A),

we set the corresponding binary variables v�i;j
0�

k � 1when themean of

the ith object (predicted state) at time k is in the FOVof the jth sensor

with configuration j 0 ≡ sj;k, and it isv
�i;j 0�
k � 0 otherwise.By j 0 ≡ sj;k,

we simply refer to the process of taking the corresponding sensor in E
with index j 0. We then compute the mutual information in expression
(16) [or Eq. (25)] for active configuration set A. Also, we take

f�i�MI�∅� � 0 because, when no sensors are active, the corresponding

mutual information is taken to be zero. In Lemmas 1 and 2, we first

show that this function f�i�MI�A� is a submodular nondecreasing func-
tion. We use the following identities (from Ref. [4]) for mutual infor-
mation, given any three random variables X, Y, and Z:

I�X;Y� � H�X� −H�XjY� � H�Y� −H�YjX�
H�Y;X� � H�YjX� �H�X� � H�XjY� �H�Y�

H�X� ≥ 0, H�X� ≥ H�XjY�, and finally H�YjX;Z� � H�YjZ�
when Y is independent of X when conditioned on Z. Here, H�X� is
the entropy (Shannon entropy) ([4] p. 224). For the following two
lemmas, we drop the superscript indicating the object index and the
subscript indicating the time index for the sake of readability. Note that
f�A� should be understood as the mutual information for a single
object using the sensors in set A.
Lemma 1: fMI�A� is nondecreasing.
Proof: Let B be A set of sensors (indices) such that A ∩ B � ∅,

and LET YB be the corresponding measurement variables. As the
random vectors x in Eq. (1) form a Markov process, the random
variables in YB (measurement variables) are mutually independent
when conditioned on X (state variables):

fMI�A ∪ B� � I�X;YA;YB� � H�YA;YB� −H�YA;YBjX�
� H�YA� �H�YBjYA� −H�YAjX� −H�YBjX� (40)

�H�YA� −H�YAjX� �H�YBjYA� −H�YBjX� ≥ H�YA�
−H�YAjX� � I�X;YA� � fMI�A� (41)

The last inequality is given by considering that YB is conditionally
independent of YA, given X as

H�YBjYA� −H�YBjX� � H�YBjYA� −H�YBjYA;X� ≥ 0
Here, the inequality is obtained by the identity that conditioning

always reduces entropy ([4] p. 237). Now, by taking C � A ∪ B, we
have fMI�C� ≥ fMI�A�, where A ⊂ C. Hence, by Definition 2, fMI is
nondecreasing. □

Lemma 1 is intuitive because adding more measurements can
never decrease the information. This is a simple and yet important
observation for maximizing theMI cost. In the next lemma, we show
that the MI cost is submodular. Submodular functions are functions
that exhibit the property of diminishing returns; i.e., it is better (more
gain in information) to add a sensor to a smaller set of sensors than to a
larger set. This property is often used in devising greedy heuristics for
submodular functions.
Lemma 2: fMI�A� is submodular.
Proof: Because the expressions in Eqs. (14) and (15) are equiv-

alent, we use the expression in Eq. (15) for the MI to show that it is
submodular. First, from the process and measurement models in
Eqs. (1) and (2), we observe that the measurement variables y are
mutually independentwhen conditioned on all the statevariables x up
to time NT ; i.e.,

p�y1; y2; : : : ; yT jX�0:NT ��
� p�y1jX�0:NT ��p�y2jX�0:NT �� : : : p�yT jX�0:NT ��

Hence, the corresponding covariance for a set ofmeasurementsYA

conditioned on X, for PDF p�YAjX�, is given as

RA � blkdiag�Ra1 ; Ra2 ; : : : ; RajAj �

where a1; a2; : : : ; ajAj are the indices in set A, Ra is the noise

covariance for the sensor with index a in set E, and the function
blkdiag concatenates the block matrices along the main diagonal of a
matrix. Alternatively, the joint noise covariance matrix for a set of
sensors with indices in set A is just the concatenation of their
corresponding noise covariance matrices along the main diagonal.
We observe that, for a given joint PDF,

p�X;YA� � N
	
�X;YA�T : �X̂; ŶA�T;

�
P ΓA

ΓT
A ΞA

�


the covariance for the conditional PDF p�XjYA� is given as

P − ΓAΞ−1
A ΓT

A and the covariance for the conditional PDF

p�YAjX� is given as ΞA − ΓT
AP

−1ΓA (Ref. [32] fact 8.1.3). Using

this identity, the denominator in Eq. (15) when using YA
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measurements is nothing but the covariance of the likelihood PDF

p�YAjX� with covariance RA. The determinant of this covariance

is simply given as

jRAj �
Y
a∈A

jRaj

To show that f�A� is submodular, we need to show that Δe�A� ≥
Δe�B� for all A ⊂ B ⊂ E and e ∈ E − B. From Definition 1, we have

Δe�A� � f�A ∪ feg� − f�A�. Using the expression in Eq. (15),

the numerator for f�A ∪ feg� is the measurement covariance

computed by taking all the sensors in A ∪ feg; and the denominator

is the constructed by concatenating the corresponding noise

covariances:

Δe�A� �
1

2
log

�����
"
ΣA ΣAe

ΣT
Ae Σe

#�����
jRAjjRej

−
1

2
log

jΣAj
jRAj

� log
jΣe − ΣT

AeΣ−1
S ΣAej

jRej
(42)

Δe�B� �
1

2
log

�����
"
ΣB ΣBe

ΣT
Be Σe

#�����
jRBjjRej

−
1

2
log

jΣBj
jRBj

� log
jΣe − ΣT

BeΣ−1
B ΣBej

jRej
(43)

where the identity for the determinant for the block matrix from

Remark 2 (Appendix B) is used: ΣA is the measurement covariance

computed for sensors in set A, and Σe is the sensor measurement

covariance computed for sensor e: ΣAe is the cross-diagonal block

matrix for the joint measurement covariance for sensors in A ∪ feg.
Matrices ΣB and ΣBe are similarly defined. It then suffices to

show that

ΣT
AeΣ−1

S ΣAe ≤ ΣT
BeΣ−1

B ΣBe

As A ⊂ B, we take B as the union of disjoint sets as B � C ∪ A; we
can then partition ΣB and ΣBe as

ΣB �
"

ΣC ΣCA

ΣT
CA ΣA

#
; ΣBe �

"
ΣCe

ΣAe

#
(44)

Here, ΣCA is the cross-diagonal block matrix of ΣB

Now, consider

ΣT
BeΣ−1

T ΣBe − ΣT
AeΣ−1

A ΣAe

�
h
ΣT
Ce ΣT

Ae

i" ΣC ΣCA

ΣT
CA ΣA

#−1"ΣCe

ΣAe

#

−
h
ΣT
Ce ΣT

Ae

i" 0 0

0 Σ−1
A

#"
ΣCe

ΣAe

#
(45)

�
2
4 W−1

1 −W−1
1 ΣCAΣ−1

A

−Σ−1
A ΣT

CAW
−1
1 Σ−1

A ΣT
CAW

−1
1 ΣCAΣ−1

A

3
5 �

2
4W−1

1 K

K KTW1K

3
5

(46)

where Remark 3 (Appendix B) was used in the final expression

with

K � −W−1
1 ΣCAΣ−1

A

Using the Schur compliment (Ref. [32] fact 9.1.5), we can observe

that "
W−1

1 K

K KTW1K

#

is positive semidefinite. Hence, we have

ΣT
BeΣ−1

B ΣBe − ΣT
AeΣ−1

A ΣAe ≥ 0

or

ΣT
AeΣ−1

A ΣAe ≤ ΣT
BeΣ−1

B ΣBe

This leads to

Σe − ΣT
AeΣ−1

A ΣAe ≥ Σe − ΣT
BeΣ−1

B ΣBe

Using the identity for positive definite matrices P and Q,

if 0 ≤ P ≤ Q, then jPj ≤ jQj (Ref. [33] corollary 8.4.10); it follows

that

jΣe − ΣT
AeΣ−1

A ΣAej ≥ jΣe − ΣT
BeΣ−1

B ΣBej

and hence Δe�A� ≥ Δe�B�.
Alternatively, in the case when sets A and B are disjoint

(A ∩ B � ∅), the proof is simpler. Here, we need to show

fMI�A� � fMI�B� ≥ fMI�A ∪ B�:

fMI�A ∪ B� � I�X;YA∪B� �
1

2
log

�jΣA∪Bj
jRA∪Bj


� 1

2
log

� jΣA∪Bj
jRAjjRBj


(47)

where jRA∪Bj � jRAjjRBj because RA∪B is a block matrix with zero

offdiagonal matrices. Express ΣA∪B as a block matrix

ΣA∪B �
"

ΣA ΣAB

ΣT
AB ΣB

#

where ΣAB is the cross-diagonal subblock matrix. Using Fisher’s

inequality (Ref. [41] theorem 7.8.5) for the determinant of a positive

definite matrix, we have

jΣA∪Bj ≤ jΣAjjΣBj

The expression in Eq. (47) becomes

fMI�A∪B�� 1

2
log

� jΣA∪Bj
jRAjjRBj


≤
1

2
log

�jΣAjjΣBj
jRAjjRBj



� 1

2
log

�jΣAj
jRAj


�1

2
log

�jΣBj
jRBj


�fMI�A��fMI�B� (48)

□

We have seen that the MI for each object is submodular and

nondecreasing. It is then required to show that the total MI for

independent objects in expression (9) is also submodular and non-

decreasing. This is shown in the next proposition.
Proposition 1: Assume the objects to be independent; then, the

total MI for all objects is submodular and nondecreasing.
Proof:As the MI for a set of independent objects is the sum of the

MI for each object, we represent the total MI as

fMI�A� �
XNo

i�1

f�i�MI�A�
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Because each f�i�MI�A� is submodular and nondecreasing, we only

need to show that the sum of the submodular functions is submodular

and nondecreasing. We show this result only for the first two objects

because this result can then be applied repeatedly to all the objects.

Let fMI�A� � f�1�MI�A� � f�2�MI�A�; then,

fMI�A� � fMI�B� � f�1�MI�A� � f�2�MI�A� � f�1�MI�B� � f�2�MI�B�
� �f�1�MI�A� � f�1�MI�B�� � �f�2�MI�A� � f�2�MI�B��
≥ �f�1�MI�A ∪ B� � f�1�MI�A ∩ B��
� �f�2�MI�A ∪ B� � f�2�MI�A ∩ B��

� �f�1�MI�A ∪ B� � f�2�MI�A ∪ B��
� �f�1�MI�A ∩ B� � f�2�MI�A ∩ B��

� fMI�A ∪ B� � fMI�A ∩ B�

Hence, fMI�A� is a submodular set function. The nondecreas-

ing property of fMI�A� � f�1�MI�A� � f�2�MI�A� can also be shown

similarly. □

Now that we have shown the MI to be a submodular set function

and nondecreasing, we can leverage interesting results for maximiz-

ing such a function using greedy approaches that are known to

achieve near-optimal solutions [18,42,43] and that are within a con-

stant factor of the optimal solution. This greedy selection can sig-

nificantly reduce the computational costs. We first review these

results from the literature and adapt these approaches to devise

suboptimal algorithms for tasking sensors. The greedy heuristic

considered is [18]

PG � PG ∪ arg max
e∈E−PG

fΔe�PG�g (49)

where PG is the solution generated by the greedy heuristic in

Eq. (49). The greedy approach here can start from PG � ∅.
Theorem 1 (Nemhauser et al. [18]): For the optimization problem,

max
A

ff�A�: jAj ≤ ng

where f is submodular, nonnegative, and nondecreasing; and

f�∅� � 0. The greedy heuristic algorithm in Eq. (49) achieves a

solution PG such that

f�PG�
f�P	� ≥

	
1 −

	
n − 1

n



n


≥ 1 −

1

e

where P	 is the optimal solution, and n is the cardinality constraint

for sets P	 and PG.

This theorem is an important result for which we need to only

select K sensors. By using the greedy heuristic in Eq. (49), the

solution obtained is close to the optimal solution and within a bound

of 1 − �1∕e�. In Ref. [18], the authors also developed an optimality

boundwithmatroid constraints on the selected setPG. Unfortunately,

for a general set constraints as in Eq. (25), it is difficult to obtain

optimality bounds. In this work, we consider a special casewhere, for

every sensor, only one configuration can be active at any given time

step. This is typically the case in many sensor-tasking problems. For

example, only one orientation or location for the sensor is possible at

any given time step.

A. Sensor Selection with Single Configuration Constraint

The specific problem we consider in this paper is about selecting

one configuration for each sensor at each time step. As discussed

in Sec. IV, each operating mode/configuration for a sensor is

considered to be a new sensor. The problem is then to just select

or make active one sensor among this group of sensors. We first

represent the sensor selection problem as a directed acyclic graph

(DAG), as shown in Fig. 2a. The nodes nS and nF represent the start

and end of the DAG. It can be observed in Fig. 2a that the directed

paths start from nodes nS to nF. Figure 2b shows the sensor

configuration block S�k�j for a single sensor j at time k, and s�j;k�
is the index corresponding to the node in the column. A null

configuration is also included as the top node for each sensor

block. This node helps in switching off the sensor. The sensor con-

figuration blocks from nodes nS to n1 represent all the sensor

configurations for all sensors at a time step of k � 1. The nodes

in one sensor configuration block are connected to all the nodes in

the next sensor block. These connections form the directed edges

for the DAG. Every walk P from nS to nF will select exactly one

configuration for every time step and every sensor. The objective is

to find the optimal path or walk P	 along the graph from starting

node nS to the final node nF that maximizes the MI. The nodes

nS; n1; n2; : : : ; nT; nF represent empty nodes with no sensors.

Hence, traversing them has no effect on the total MI. These nodes

are just used to demarcate the sensor configurations for each time

step. Note that theMI function is not additive along the nodes of the

graph and has to be evaluated for a given path P as fMI�P�. Here,
theweight of each edge is taken as one. In amore general setting, the

weight of the edges can indicate the cost of using a specific

configuration for each sensor. We now can leverage the greedy

approach for a directed graph from the following work from

Ref. [19], where the problem is referred as the submodular orienta-

tion problem (SOP). A polynomial time algorithm for the SOP is

given in Algorithm 1.

Fig. 2 Directed graph sensor selection.

778 ADURTHI, SINGLA, AND MAJJI

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

A
ug

us
t 2

7,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

43
99

 



RG�a; b; B; T ; N� is a recursive greedy algorithm and achieves

f�PG� ≥ f�P	�
�1� log2�n��

approximation, where P	 is the optimal path and n is the number of
nodes in pathP	. ProcedureRG of Algorithm 1 finds the suboptimal
greedy path from node a to node b for the DAG. Argument B is the
budget, and T is the path traversed so far. Here, it is required to have
the recursion depth ofN ≥ �1� log2�n��. As we take each edge with
aweight of one, the budgetB is the length of the path from nS to nF in
Fig. 2a; i.e.,n � NS × T. The length of the arcL�a; b� fromnodea to
node b is the minimum number of steps towalk along the graph from
a to b. If there is no directedwalk in the graph between two nodes, the
length is taken as infinity (or infeasible). The algorithm essentially
tries to approximately guess the midnode and the associated budget
for the optimal pathP	, and then it recursively finds the left and right
paths to thismidnode in a greedymanner. The algorithm is initiated as
RG�nS; nF; n;∅; N�. In Ref. [19], the authors further improved
the algorithm using a binary search for the budget and achieved
an O�log2�K�� approximation. It can be observed that the graph
structure considered in this paper, as shown in Fig. 2a, has no cycles;
hence, the runtime is typically much faster in real-time implementa-
tion. As we are required to generate sensor tasks or schedule in

near-real time, we extend the sequential approaches described in
Secs. IV.B and IV.C that, in turn, can be solved by the RG algorithm
by simply modifying the cost function.

1. Sequential in Time

Similar to the sequential in time strategy in Sec. IV.B, the opti-
mization problem is solved sequentially for each time step while
holding the sensor tasks in previous time steps as constants. TheDAG
for the kth time step is illustrated in Fig. 3a. The objective is to find a
pathP in this graph from nS to nF so as to maximize the modifiedMI
cost

PG
k � arg max

P
f�1: k−1�MI �P� � I�X; fP ∪ PG

1: k−1g�

where the fixed set of sensor configurations up to the k − 1th time

step is PG
1: k−1 � PG

1 ∪ PG
2 ∪ : : : ∪ PG

k−1.

2. Sequential in Sensors

Similar to the greedy in time strategy, the greedy in sensors
approach tasks each sensor individually.When the number of sensors
are higher than the number of time steps, it might then be desirable to
iterate through the sensors in a greedy way rather than in time.
Assuming that the sensors are reindexed according to a user-defined
priority order (for example, according to the number of objects in the
FOV), the sensor-tasking problem begins by sequentially optimizing
each sensor over a period of time while accounting for the all the
previous sensor schedules. The case for the jth sensor is depicted in
Fig. 3b. The optimization problem is

PG
j � arg max

P
f�1: j−1�MI �P�

where the objective function is

f�1: j−1�MI �P� � I�X; fP ∪ PG
1: j−1g�

where the fixed set of sensor configurations up to sensor j is

PG
1: j−1 � PG

1 ∪ PG
2 ∪ : : : ∪ PG

j−1.

B. Receding Horizon

Withmotivation from the practical advantages of model predictive
control [44], the sensor-tasking problem can also be solved in a
receding-horizon way. In this approximation, the decision variables
are only solved for a time window of �k; k� NK �, where NK is the
user-defined number of time steps. Once solved for �k; k� NK �, the
sensor schedule is applied for the time interval, the measurements
collected are processed, and a new optimization problem is solved for

Fig. 3 Tasking graph for the sequential selection.

Algorithm 1: RG�a; b;B;T;N� [19]
Result: PG

if L�a; b� > B, return infeasible;

PG
←fa; bg;

if N � 0, return PG;

p � PG
1 ∪ PG

2 , m � Δp�T �;
for each e ∈ E, do
for 1 ≤ B1 ≤ B, do

PG
1 ←RG�a; e; B1; T ; N − 1�;

if PG
1 is infeasible, then

continue;
else
PG

2 ←RG�e; b; B − B1;T ∪ PG
1 ; N − 1�;

end
if PG

2 is infeasible continue;

p � PG
1 ∪ PG

2 ;

if Δp�T � > m, then

PG
←PG

1 ∪ PG
2 ;

m←Δp�T �
end

end
end
return PG.
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the next time interval. Such an approximation can considerably

reduce the dimension of the optimization problem. As noted in

Refs. [3,13], multistep sensor tasking is beneficial but can also be

disadvantageous when the object process models are not well known

or when the targets are maneuvering. Hence, we use a receding-

horizon approach to task sensors over a shorter timewindow and then

re-solve the problem at the end of the window. The measurements

collected during the time window are fully processed before the new

sensor-tasking problem is solved for the next time window.

VI. Numerical Simulations

In this section, we use two applications to illustrate the joint

multistep mutual information-based sensor-tasking approaches pro-

posed in the previous section paper. The first application is about the

two-dimensional (2-D) tracking of unmanned aerial vehicles using

simple range-bearing sensors with limited FOVs. The second exam-

ple is a three-dimensional (3-D) problem of tracking multiple satel-

lites with ground-based sensors with limited FOVs. In both of these

examples, the limited FOV sensors can actively be reoriented to

improve the tracking performance.

A. Example 1: UAV Tracking

Figure 4 depicts the scenario where 20 UAVs are tracked

by two range-bearing sensors in a 2-D planar region. This example

can also depict the tracking of ground-based robots using a camera or

laser range finder. The sensors considered have a limited FOV

(modeled as a triangle in 2-D) given by vertex angles π∕9 and

�pi∕18�. There is no limit on the depth or range of the sensor’s

FOV, even though Fig. 4 shows a closed triangular FOV only

for illustrative purposes. The sensors are located at �−20; 30� km
and �30; 20� km, respectively. The first sensor noise covariance is

R1 � diag���100 m�2; �2π∕180 rad�2��, whereas the second sensor

has a noise covariance of R2 � diag���50 m�2; �0.5π∕180 rad�2��.
Although they have limited FOVs, these sensors can be actively

reoriented to better track the targets. The total simulation duration

is 1500 s with a 5 s time step. The UAVs (or ground robots) perform a

turning motion with an unknown turn rate. The kinematics of

the turningmotion ismodeled by the set of nonlinear equations called

coordinated turn (CT) equations, which are typically modeled

as a Dubins car, as described in Ref. ([45] p. 467). The CT model

is characterized by constant speed and a constant turn rate. The turn

rateΩ is usually unknown, and is hence appended to the state vector,

making the model nonlinear. The system equations for the CT

model and the corresponding process noise, where the state vector

is x � �x; y; vx; vz;Ω�T , are

xk �

2
66666666666666664

1
sin�ΩΔt�

Ω
0 −

1− cos�ΩΔt�
Ω

0

0 cos�ΩΔt� 0 − sin�ΩΔt� 0

0
1− cos�ΩΔt�

Ω
1

sin�ΩΔt�
Ω

0

0 sin�ΩΔt� 0 cos�ΩΔt� 0

0 0 0 0 1

3
77777777777777775

xk−1 �ωk−1;

Qk−1 � 0.16

2
6666666666666666664

Δt3

3

Δt2

2
0 0 0

Δt2

2
Δt 0 0 0

0 0
Δt3

3

Δt2

2
0

0 0
Δt2

2
Δt 0

0 0 0 0
0.01

0.16
Δt

3
7777777777777777775

(50)

where Δt is the time-step duration. The true initial locations for the

targets are randomly generated in the rectangular region given by

diagonal vertices at [1000m, 1000m] and [25,000m, 25,000m]. The

corresponding velocities and turn rates are generated in the interval of

�125; 175� m∕s and �−1; 1��π∕180� rad∕s, respectively. The initial

covariance for the filters is taken as

P0 � diag���10 m�2; �10 m�2; �1 m∕s�2; �1 m∕s�2; �0.2 rad∕s�2��

The initial mean for the filters is randomly generated from aGaussian

PDF using the true initial condition as the mean and P0 as the

covariance. This process tries to model the scenario in which there

is one ground truth and the analyst initializes the filters fromhistorical

data or recent measurements that are corrupted with noise. All the

filters use the Conjugate Unscented Trasnforms points of 8th order,

denoted as CUT8 [20]. The orientation angle for each sensor is

discretized using 20 uniformly spaced nodes on �−π; π�. Every ori-

entation of a sensor can be considered to be a new sensor. The

objective is then to select the appropriate set of sensors over time.

Because only one orientation can be active at any time instant, we use

Fig. 4 Example 1: UAV tracking.
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the greedy algorithms developed in Sec. V to pick the suboptimal set

of sensors.
We compare all the sequential algorithms developed in Sec. V. In

addition, we also simulate a simple raster scan, where the orientation

of sensor linearly traces the nodes with each time step. This tries to

model a simple rotating sensor. Furthermore, we also compare our

proposed approacheswith the approach described in Ref. [46], where

the authors proposed to first precompute the information table and

then, using an auction algorithm, to select the sensor tasks. Each row

of the information table corresponds to a target, and the columns

correspond to time steps. The information for each target and for each

time is computed by orienting the sensor toward the predicted loca-

tion of the target. In this way, the entire information table can be

constructed. The auction algorithm is simple to implement and

proceeds by picking the maximum entries in the table, with the

constraint that only one entry per column is selected. This is because

the sensor can only have one orientation at any given time step. We

label this algorithm as ITAUC in the following simulations and use

themutual information to compute the entries in the information table

by selecting the orientation of the sensor closest to the unit vector

from the sensor to the target’s predicted position. Note that we can

also use a binary integer programming solver to select entries in the

table that satisfies the constraints that only one entry in each column

is selected. In Ref. [5], the authors generated a similar information

table for a single–time-step sensor-tasking problem and used a binary

integer programming solver to maximize the information. We first

show the results of running the filters without considering any FOV

constraints in Fig. 5. In these figures, all sensors can see all objects at

all time steps. This simulation is only provided as a basis for com-

parison to the results when FOV constraints are applied and sensors

orientations are optimized.
Figure 6 shows snapshots of the UAV tracking simulations at

random time steps for the sequential in time greedy solution. It can

be seen that the sensor-tasking approach optimizes the orientation of

the sensors to track all the objects. In Fig. 7, the sensor tasking is

performed over a receding horizon of 15 time steps, as described in

Sec. V.A. Note that, in all the simulations, the same ground truth is

used. Furthermore, the same measurements are used if the object

is within the FOVof the sensor. This provides a means to compare

the performance of all the sensor-tasking schemes. The scales of

the errors are high in Figs. 5 and 7 because the sensor noise used in the

simulation is high. The maximum values in Fig. 7 are high because

some objects are occasionally lost when the predicted motion is far

away from the truemotion. It can be observed that a simple raster scan

has poor performance. The sequential in time and sequential in

sensors methods, as described in Sec. V, have a better mean perfor-

mance than the ITAUC. This is because the algorithms in Sec. V

compute the joint mutual information over all sensors, objects, and

time steps for the sensor configurations. It should be noted that simple

heuristics based on precomputing the information tables as in

Refs. [5,46] and posing a linear programming problem provide no

guarantee that the joint information is maximized over time because,

in general, the information is not additive over sensors and time steps.

The joint information (MI or KL) is strongly coupled to the sensor-

tasking decision variables, and hence cannot be computed before

fixing a sensor task/schedule.

Fig. 6 Example 1: UAV tracking snapshots.

Fig. 5 Example 1: estimation with no FOV for UAV. (RMSE denotes rms error.)
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As noted in Refs. [13,46], longer time periods for solving the

sensor tasks can lead to degraded performance. This is because the

sensor-tasking methods only use prior states and measurements to

predict the motion of the objects, and then they optimize the sensors

for this predicted motion. For longer time durations, the accumulated

errors in prior data, unmmodeled dynamics and model parameters

can lead to large deviations of the predicted states from the true states.

Figure 8 describes this scenario, in which it can be observed that a

shorter time horizon of seven steps does better than the results for the
corresponding sequential in time sensor tasking with 15 time-step

windows in Fig. 7. Furthermore, in Fig. 8, by taking a larger receding

time horizon of 50 time steps, the performance becomes worse

because, once the estimates are farther from the truth, they are

essentially lost. In such cases, it is often required to use a raster scan

to find the objects again.

B. Example 2: Satellite Tracking Using Greedy Algorithms

In this example, 50 satellites are tracked using two ground-based
sensors. We compare the sequential in time approach using the
greedy recursive algorithm in Sec. Valong with a simple raster scan
and the ITAUC algorithm. The schematics for two 3-D sensors is
depicted in Fig. 9. Here, each sensor has amaximumFOVdenoted by
the field of regard (FOR), which represents the limits on the orienta-
tion of the sensor. The sensor also has a FOV that ismuch smaller than
the FOR. This FOV can be oriented anywhere within the FOR. Only
objects within the FOVare observable by the sensor. Hence, the FOV
of the sensor has to be actively oriented within the FOR. To this end,
the FOR is partitioned into cells such that the FOVs overlap when
oriented toward the centers of adjacent cells. The extent of overlap
can be controlled by the resolution of the partition. Although the FOR
is represented as a rectangular region in Fig. 9, in the simulations,

Fig. 7 Example 1: Sensor tasking for UAV.
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we use a conical region for the FOR and the FOV for ease of

implementation.
The objects are randomly generated from a uniform distribution

over the Keplerian orbital elements a ∈ �8;000; 10;000� km,

e ∈ �0.3; 0.7�, i ∈ �1.3; 1.7� rad, ω ∈ �0; 1.22� rad, Ω ∈ �0; 0.1� rad,
and M0 ∈ �0; 0.52� rad. The dynamics of each space object is

modeled by the two-body dynamics with a J2 perturbation ([47]

p. 593). Furthermore, the perigee of every orbit is checked to see if

it greater than the radius of the Earth. The initial covariance for each

filter is taken as

P0∕0 � diag�0.01 km2; 0.01 km2; 0.01 km2; 1e−8 km2∕s2;

1e−8 km2∕s2; 1e−8 km2∕s2�

and the filters are initialized in a similar manner, as in example 1.

The three hypothetical sensors chosen are located on the surface of

the Earth at elevation and azimuth angles of �1.3; 2.3� rad and

�1.65; 0.26� rad, respectively, measured from an Earth-centric and

Earth-fixed inertial reference frame. The conical FORs have half-

angles of π∕4 and π∕3, respectively. In these simulations, the Earth

is considered to be stationary. The rotation of the Earth can be

incorporated into the sensor-tasking process because the rotation of
the Earth can be considered deterministic, and hence the positions
of the sensors are known at all time instants.When the sensormoves
in a deterministic motion, the sensor model in Eq. (2) will be
time varying with respect to the sensor’s location. The sensors
in this example only measure the local range, elevation, and azi-
muth angles of the objects (within the FOV) with respect to a
reference frame centered at the sensor’s location and parallel to
the Earth-centric and Earth-fixed frame. All the sensors have a
noise covariance of

R � diag���100 m�2�0.05π∕180 rad�2; �0.05π∕180 rad�2��

The half-angles for the conic FOV of the sensors are taken as
0.2315 and 0.3876 rad, respectively. The orientations of the sensor
mounts are discretized on a uniform grid within the FOR using an
11-by-11 grid. The total simulation time is 24 h with a time step of
10 s. The receding-horizon tasking window is taken as 50 time
steps. A new sensor-tasking problem, for the next window, is solved
at the end of the current tasking window, when all the measure-
ments are processed. Two algorithms are compared: the ITAUC
algorithm as described in example 1, and the sequential in time

Fig. 8 Example 1: sequential in time, comparing receding-horizon time windows.

Fig. 9 Configurable 3-D sensor, FOR, and FOV.
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greedy algorithm as described in Sec. V. The results are shown in
Fig. 10. It can be observed that the sequential in time greedy
approach tends to do better than the ITAUC approach. This can
be attributed to the joint computation of the MI in the sequential in
time approach. The joint mutual information helps in coordinating
the orientations of the sensors so as to track all objects while taking
into account the previous sensor tasks.

C. Example 3: Satellite Tracking Using Exhaustive Search

In this example, a satellite tracking scenario (similar to example 2)
is used to illustrate the approaches in Secs. IV.B–IV.D. Here, we use
an exhaustive search instead of a nonlinear binary integer solver
because it lends itself to parallel processing. Ground-based sensors
with limited FORs are used to observe the satellites. The limited
number of sensors are dynamically tasked to track multiple satellites
orbiting the earth. Efficient tasking helps inmaking optimal use of all
the sensors to track all the objects. The ground-based sensorsmeasure
the local radial distance, elevation, and azimuth angles of each space
object. TheEarth is considered to be fixedwhile the satellites orbit the
Earth. This assumption is only made for ease of illustration and is not
a limitation for the approaches described in this paper. The
approaches developed in this work can easily incorporate moving
sensors (for example, sensors on a rotating Earth or in orbit). In such
cases, the sensor model in Eq. (2) becomes time varying with respect
to the sensor’s position. The sensor information computations in
Sec. III.B would directly use the dynamic time varying models (time
varying because the sensor’s position is a known time-varying func-
tion) of the sensors to compute the joint mutual information over
time. The two randomly selected sensors on the surface of the Earth
are located at elevation and azimuth angles of �1.74; 0.13� rad and
�1.04; 1.30� rad. Each sensor has a limited FOR modeled by a cone
with half–angles of π∕3 and π∕3. The orientation of the FOR is
radially outward from the center of the Earth. Within this FOR, the
sensors have a FOVwith a half-angle of 0.3 rad that can be oriented to
observe space objects. The sensor is constrained such that it can only
observe a single space object at a given time instant and has to be
reoriented within the FOR to observe another object; this model for a
limited field-of-view sensor was inspired from the work in Ref. [5].
This sensor model with such constraints helps define the pointing
direction of the sensor toward the predicted location of the target.
Note that this constraint is only used during the sensor-tasking
optimization process to select the best orientations of the sensors.

Once the sensor task is solved and applied, this constraint is dis-

regarded and any objectwithin the FOVof the sensor generates a valid

measurement for the filters to process. For example, a telescope with

a camera system has to be oriented in the direction of the objects that

are to be observed.
Once a sensor is tasked to observe a specific object at a future time

instant, it is assumed that the sensor can be quickly reconfigured into

a direction that is oriented toward the predicted mean of the object’s

position at this time instant. The constraint of observing only one

object at any particular instant of time is modeled as [5]

XNt

i�1

v�i;j�k � 1

�
j � 1;2; : : : ; Ns

k � 1;2; : : : ; NT

(51)

This constraint allows multiple sensors to observe the same satel-

lite. When there are multiple overlapping FOVs of different sensors,

some space objects can be observed by multiple sensors. The sensor-

tasking problem then becomes interesting in assigning sensors to

these objects over a period of time. In the following examples, the

filters and tasking procedures are simulated over 24 h with a meas-

urement time interval of 5 min. The 15 orbits are randomly generated

from a uniform distribution over the classical Keplerian elements as

a ∈ �8075.7; 8135.7� km, e ∈ �0.0636; 0.3364�, i ∈ �0.85; 1.7� rad,
Ω � 0 rad, ω � 0 rad, and M0 ∈ �0; �π∕20�� rad. The orbits are

selected such that they intersect the conic FOR of the sensors,

and their perigee is greater than the radius of the Earth. The initial

means for each filter are randomly selected from a Gaussian distri-

bution with the mean as the true initial condition of the satellite and

covariance

P0∕0 � diag�0.01 km2; 0.01 km2; 0.01 km2; 1e−8 km2∕s2;

1e−8 km2∕s2; 1e−8 km2∕s2�

Each filter also has the same initial covariance of P0∕0.

A large measurement noise for the sensors is considered as

R � diag��0.1 km�2; �2 deg�2; �2 deg�2�.
The FORs of the sensors overlap, and some satellites can be

observed by both of the sensors. A moving horizon window of five

time steps (or 25 min) is considered to optimize the sensor schedule.

The initial conditions of the satellites are such that they more or less

Fig. 10 Example 2: comparison of sensor-tasking approaches for satellite tracking (DU: Distance units, TU: Time units).
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simultaneously enter the field of view of the sensors. This makes the

sensor-tasking procedure challenging because the sensors have to be

scheduled in away to reduce the uncertainty in the entire system. The

measurements for the filters are generated from the true satellite orbits

when they are within the FOVof the sensors.

The three exhaustive suboptimal search methods of sequential in

sensors, sequential in time, and sequential in objects are individually

used to task the sensors. The same set of satellites, filter conditions,

and measurements is used for all the methods considered in this

example. For the sequential in objects case, the objects are ordered

using the trace of their covariance; for the sequential in sensors case,

the sensors are ordered by the number of objects in the FOV.Figure 11

shows the 2-norm of the position error in the satellites. The maxi-

mum,mean, andminimum errors among the satellites are plotted as a

function of time. It can be seen that all the methods have similar

tracking performances. Similarly, Fig. 12 shows theminimum,mean,

and maximum of the Frobenius norm of the covariance matrices for

all the satellites at every time step. The errors grow initially and

then reduce after 6 h into the simulation, when multiple sensor

measurements are tasked for each satellite over multiple revolutions.

Fig. 11 Example 3, case 1: 2-norm position error (in kilometers) vs time (in hours).

Fig. 12 Example 1: Frobenius norm of position covariance matrix.
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The measurements for each satellite are only available when they are
inside the FOR of the sensors and have to complete one full revolu-
tion about Earth to intersect the FORof the sensors again. The sensor-
tasking routine accounts for the constraint that only one object can
be observed by the sensor at any given time step. Hence, there can
be stretches of time where some satellites do not have observations,
leading to a growth in their uncertainty. It can be observed in
Fig. 11 that, after 10 h, the errors are kept low and the sensor-tasking
procedure appropriately distributes the observations for all the
objects.
On close observation of Figs. 11 and 12 in the time interval of 6 to

11 h, it can be seen that the sequential in sensors and sequential in
timemethods are slightly better that the sequential in objects method.
This is due to the penalty of limiting the number of sensor observa-
tions in the method for sequential in objects. Although the tracking
performance is similar for all the sequential methods, the computa-
tional costs vary. The ideal exhaustive search problem would have
around 1.4272e� 45 configurations. But, with the constraint in
Eq. (51) for feasible assignments, the exhaustive search for the

sequential in sensors approach has a total of Ns × NNT
o � 1518750

possibilities; whereas the sequential in time and the sequential in

objects approaches have computational costs of NT × NNs
o � 1125

and No × 2NsNT � 15360, respectively. Although these lead to a
large space for an exhaustive search, it should be noted that most
of the search space is infeasible because the sensors have limited

fields of view. All the tasking events that contain an assignment of a

sensor to an object outside its FOR can be simply skipped, hence

reducing the search space significantly. The sequential in sensors

method takes an average of 47 s to compute the sensor schedule over

the entire time window of 25 min, whereas the sequential in time and

the sequential in objects methods take less than 5 s. As an exhaustive

search naturally lends itself for parallel computations, executing the

exhaustive search over the entire feasible tasking search space can be

greatly increased by using multiple threads or cores that are ubiqui-

tous onmodern processors. All the simulations are done inMATLAB

for this paper. A C/C++ implementation will significantly increase

the speed of the exhaustive search.

Figure 13 shows a heatmap of the trace of the covariancematrix for

each satellite in the left column. Each row corresponds to an object,

and the x axis corresponds to time. A similar conclusion can be

made that all the sequential methods have similar performances in

reducing the uncertainty. The intensity of the color map indicates the

magnitude of the trace. The right column in Fig. 13 shows the sensor-

tasking schedule for each object along the y axis. A dark vertical line

or mark indicates that a sensor has been assigned to the object. It

can be observed that there are empty vertical bands of no sensors

being tasked. This is because the objects almost move in and out of

the FOR as a group, leading to intervals of timewith no objects in the

FOR. The objects have to roughly make a revolution before entering

the FOR.

Fig. 13 Example 3, case 1: heat map for trace of position covariance matrix.
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VII. Conclusions

The problem of tracking multiple objects using a limited number

of sensors with operational constraints was considered. The multi-

step joint mutual information was used over multiple objects,

sensors, and time steps as a measure of sensor performance. This

joint mutual information was maximized to find the optimal sensor

schedule or configuration. It was observed that the ideal problem

of maximizing the joint mutual information cost is nonlinear and

nonconvex, as well as often combinatorial in nature, and thus

computationally challenging and intractable. To address this chal-

lenge, it was first shown that the mutual information cost consid-

ered in this paper is submodular and nondecreasing, and thus lends

itself to efficient greedy approaches that can achieve suboptimal

solutions with a constant bound to the optimal solution. Further-

more, methods that were sequential in time, sequential in sensors,

and sequential in objects were proposed in a moving horizon

approach to further reduce the computational complexity. The

numerical simulations of tracking multiple UAVs and satellites

with limited ground-based sensors illustrated the performances of

the various approaches proposed in this paper. In future work, the

combined problem of sensor tasking and data association will be

pursued.

Appendix A: Fisher Information Matrix as a Measure of
Local Information

Consider the likelihood PDF p�yjx�, where y is the vector

of measurements and x is the state being estimated from these

measurements. Then, the Kullback–Leibler divergence between the

likelihood PDF p�yjx� computed at x and the likelihood PDF

p�yjx� Δx� computed at an infinitesimal change in the estimate is

given as ([21] p. 39)

DKL�p�yjx�jjp�yjx� Δx�� �
Z

p�yjx� log
�

p�yjx�
p�yjx� Δx�



dy �
Z

p�yjx��logfp�yjx�g

− logfp�yjx� Δx�g� dy (A1)

The Taylor series expansion of logfp�yjx� Δx�g about x, up to

the second order, is given as

logfp�yjx� Δx�g ≈ logfpg � 1

p

Xn
i�1

∂p
∂xi

Δxi

� 1

2

Xn
i�1

Xn
j�1

�
−

1

p2

∂p
∂xi

∂p
∂xj

� 1

p

∂2p
∂xj∂xi

�
ΔxiΔxj (A2)

where p ≡ p�yjx� and is a PDF in the random variable y. The partial
derivatives ∂p∕∂xi and ∂2p∕∂xj∂xi are evaluated at the given(or

known) estimate x. Substituting the Taylor series expansion of

Eq. (A2) into the KL divergence expression of Eq. (A1) gives the

simplified KL divergence as

DKL�p�yjx�jjp�yjx� Δx��

≈ −
Z

p�yjx�
	
1

p

Xn
i�1

∂p
∂xi

Δxi

� 1

2

Xn
i�1

Xn
j�1

�
1

p2

∂p
∂xi

∂p
∂xj

� 1

p

∂2p
∂xj∂xi

�
ΔxiΔxj



dy (A3)

� −
Xn
i�1

Z
∂p
∂xi

dyΔxi

� 1

2

Xn
i�1

Xn
j�1

Z
p�yjx�

�
1

p2

∂p
∂xi

∂p
∂xj

�
dyΔxiΔxj

−
1

2

Xn
i�1

Xn
j�1

Z
∂2p

∂xj∂xi
dyΔxiΔxj (A4)

Under smooth regularity conditions for the likelihood PDF p�yjx�
and all of its first two partial derivatives with respect to x, the integral
and derivative operators can be interchanged such thatZ

∂2p
∂xj∂xi

dy � ∂2

∂xj∂xi

	Z
p�yjx� dy



� ∂2

∂xj∂xi
�1� � 0

and Z
∂p
∂xi

dy � ∂
∂xi

Z
p�yjx� dy � 0

The KL divergence then becomes

DKL�p�yjx�jjp�yjx� Δx��

≈
1

2

Xn
i�1

Xn
j�1

Z
p�yjx�

�
1

p2

∂p
∂xi

∂p
∂xj

�
dyΔxiΔxj

� 1

2

Xn
i�1

Xn
j�1

Z
p�yjx�

�
1

p2

∂p
∂xi

∂p
∂xj

�
dy|�������������������{z�������������������}

FIMij

ΔxiΔxj

where the ith row and jth column of the FIM are given as

FIMij �
Z

p�yjx�
�
1

p2

∂p
∂xi

∂p
∂xj

�

dy �
Z

p�yjx�
�
∂ log�p�

∂xi
∂ log�p�
∂xj

�

dy � Ey

�
∂ log�p�

∂xi
∂ log�p�
∂xj

jx
�

(A5)

It can be observed that the FIM is theHessian of theKL divergence
evaluated at the estimate x. Hence, the FIM is a measure of the local
curvature at the estimate.

Appendix B: Useful Matrix Identities

Remark 1 (Ref. [32] fact 3.2.2) Woodbury identity:

�A� CBCT�−1 � A−1 − A−1C�B−1 � CTA−1C�−1CTA−1 (B1)

Remark 2 (Ref. [32] fact 9.1.2):����
�
A11 A12

A21 A22

����� � jA11j ⋅ jA22 − A21A
−1
11A12j

� jA22j ⋅ jA11 − A12A
−1
22A21j (B2)

Remark 3 (Ref. [32] fact 9.1.3):�
A11 A12

A21 A22

�−1

�
"
A−1
11 � A−1

11A12W
−1
2 A21A

−1
11 −W−1

1 A12A
−1
22

−A−1
22A21W

−1
1 A−1

22 � A−1
22A21W

−1
1 A12A

−1
22

#

(B3)

ADURTHI, SINGLA, AND MAJJI 787

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

A
ug

us
t 2

7,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

43
99

 



with W1 � A11 − A12A
−1
22A21 and W2 � A22 − A21A

−1
11A12. Further-

more, using Remark 1, we have W−1
1 � A−1

11 � A−1
11A12W

−1
2 A21A

−1
11 .
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