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DATA-DRIVEN MODELING FOR NAVIGATION IN CISLUNAR
SPACE

Matthew Brownell*, Mackenzie Mangette†, Roshan Eapen‡and Puneet Singla§

The main focus of this work is to identify a time-varying model to capture the
differences in model fidelity for trajectories in the cislunar orbital realm. This is
motivated by a lack of analytical models available that describe the high fidelity
dynamics of cislunar space. Rather than finding a global model between input
and output space, subspace methods for system identification will be utilized to
find a subspace over which unknown dynamics evolve. This identification method
allows one to obtain a simplified model that captures dominant dynamical behavior
of the system as a departure from a lower fidelity model.

INTRODUCTION

Until recently, space missions have predominantly taken place in near-Earth orbital regimes (Low
Earth orbit (LEO) to Geostationary orbits (GEO)). The dominant transport mechanisms within this
two-body (Earth and satellite) framework can be described very accurately using osculating or-
bital elements and the various dynamical phenomena also persist in a higher-fidelity model.2, 6, 25

The perturbed two-body (Keplerian) framework has led to extensive modeling, various approximate
solutions of increasing fidelity, and analysis of representative behaviors to investigate spacecraft
motion in orbits around Earth.2, 3, 6, 20, 27 Guidance and navigation architectures are well-established
for spacecraft motions in these orbital regimes.4, 9, 10, 12, 19, 23, 29, 30 To get closer to the ultimate ob-
jective of setting foot on Mars, there has been an increase in interest in lunar exploration in recent
years.1, 17 Consequently, the exploration of cislunar space under the framework of three bodies
(Earth-Moon-spacecraft) has become increasingly prevalent as the Artemis Program, headed by
the National Aeronautics and Space Administration (NASA), continues the endeavor to re-initiate
crewed missions to the Moon.1, 17 However, beyond GEO (XGEO), the dynamical environment
shifts, and the fundamental structure of space trajectories can be radically different. Unfortunately,
the chaotic nature of generic three-body trajectories renders it difficult to develop an elegant and
universally applicable navigation solution.26

It is often overlooked that the three-body problem represents only a subset of the broader class
of multi-body dynamical problems encountered in engineering. Consequently, when transitioning
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to higher-fidelity models involving more than three bodies, the dynamical structures either cease to
exist or only exist in a qualitative manner requiring researchers to resort to numerical techniques.21

Furthermore, even in low-fidelity models, global dynamical behavior has largely remained quali-
tative and computational, limiting the theory or nonlinear prediction, estimation, and control away
from periodic orbits and fixed points,7, 8, 11, 13, 15 such as in the case of transfers between the Earth
and the Moon or between families of periodic orbits. This work is a step towards developing a
framework to capture the dynamical information between two frameworks of varying fidelity, the
circular restricted three-body framework and the Ephemeris framework consisting of four bodies
(Sun, Earth, Moon, and spacecraft) with the position of the three more massive bodies provided by
the JPL Ephemeris data.22 The guiding principles of this work are rooted in system identification,
or methods of understanding and analyzing complex systems by identifying the dynamics through
discrete system matrices. The aim of this work is to provide data-driven, actionable recommenda-
tions for trajectory design in higher-fidelity space environments by identifying the dynamical model
that captures differences between the two models. Specifically, the case of a transfer between a L2

halo orbit and a L1 Halo orbit is examined.

Utilizing inertial measurements of a spacecraft as an output of a dynamical system, previous work
proposed utilizing a system identification tool– the Eigensystem Realization Algorithm (ERA)– to
find the subspace over which the dynamics can be explained while approximating the input-output
data with a linear, time-varying system.? There have also been explorations of the CR3BP from a
data-driven standpoint using the Koopman operator theoretic approach.14, 18, 24, 28 Koopman opera-
tors essentially determine a higher-dimensional subspace where the dynamics of a dynamical sys-
tem is linear.5 However, to capture the complete dynamics of a nonlinear system, the dimension of
the higher-dimensional phase-space can become infinite. Utilizing the Koopman operator-theoretic
approach with system identification methods such as the ERA and dynamic mode decomposition
(DMD) has enabled the discovery of intrinsic coordinates for a large number of dynamical systems,
however a closure of the Koopman methods has yet not been found.5 However, its applications to
the three-body problem framework is only explored minimally.

The current work seeks to utilize this approach to quantify the differences in dynamical behav-
ior between two model frameworks via the identification of a departure motion dynamical system.
Based on these efforts, this paper offers two contributions: (i) a data-driven procedure for identi-
fying departure dynamics along a transfer trajectory designined in a lower-fidelity model, and (ii)
a demonstration of this procedure in the context of a variety of natural motions throughout the
Earth–Moon neighborhood. In addition, this paper will cover the motivation, methodology, and
goals of the research work. The first section following this introduction will discuss the two dynam-
ical models in detail. Next, the problem statement is defined and the tools and algorithms used to
accomplish the intended tasks will be discussed. Lastly, results will be presented and analyzed in
the scope of relevant applications.

PROBLEM STATEMENT AND RELEVANT BACKGROUND

Consider a spacecraft on a transfer trajectory between the L2 Halo orbit and an L1 Halo orbit.
The energy levels of the two Halo orbits are different. The trajectory is constructed using a shooting
method employed in the Circular Restricted Three-Body Problem (CR3BP) framework.26 Under the
higher-fidelity framework i.e. the Ephemeris model, these trajectories deviate from their nominal
path.21 A core idea of this paper is to capture this deviation as a linear time-varying model using
system identification methods.
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The two models utilized in this study are of varying complexity with lower-fidelity three-body
framework with simplifying assumptions on the motion of the two larger bodies, and four-body
dynamics with the instantaneous position of the planets obtained from the JPL ephemeris for a
specific epoch. There are dynamical structures that exist in the CR3BP that can be leveraged to plan
transfers in the CR3BP framework. While these structures persist in the higher fidelity framework,
that may not exist using the same initial conditions; understanding the difference between these
models is an important challenge that will aid in quantifying the force-model structure differences
between two dynamical models. This is the overall insight that this work seeks to obtain. System
identification, specifically TVERA, allows one to quantify how the addition of one massive body
(or other influential forces) affects the dynamics of a spacecraft’s trajectory.

The goal is to model the perturbation from the nominal trajectory defined in the CR3BP utilizing
training data produced by perturbing the spacecraft in the ephemeris model. The nominal trajectory
investigated in this work is a transfer from periodic orbits about the CR3BP equilibrium points L2

to L1. Previous work? has looked at the complicated dynamics near a stable Halo orbit about L1.
The transfer between equilibrium points and the motions near the Moon dramatically changes the
previously identified dynamics. The identified model is no longer valid for the dynamics found
locally about an equilibrium point; instead it is locally about the transfer itself. Thus, the training
data (generated using the higher-fidelity model) used will be trajectories perturbed from the transfer,
which will serve as the nominal trajectory. To stress-test this system identification method, it is best
to train the model with a trajectory that traverses across regions with vastly different dynamics.

The following section describes the two dynamical models used in this work.

Circular Restricted Three-Body Problem Framework

The Circular Restricted Three-Body Problem (CR3BP) model describes the motion of an object
under the mutual gravitational effect of two larger masses (called primaries). The two primaries
rotate about their common barycenter in a circular orbit within their orbital plane. The x̂-axis
is directed from the barycenter to the less massive primary and the ẑ-axis is in the direction of
the angular momentum vector of the two primaries. Non-dimensionalization brings about a unit-
eliminating simplifications in which the angular velocity of the rotating frame is ω = 1 and is purely
about the z direction. In addition, the time period of the primaries orbiting about their barycenter
is 2π. Denoting µ = m2

m1+m2
as the mass parameter. The more massive primary, with mass m1,

is located at (−µ, 0, 0) and the other, with mass m2, at (1 − µ, 0, 0). The set up of this three-body
problem is shown in Figure 1.
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Figure 1: The Circular Restricted Three-Body Problem (CR3BP) with the Earth and Moon as the
two primaries and a spacecraft as the third body of negligible mass.

The equations of motion for the CR3BP in the rotating frame can be written in vector form as
shown in Eq. (1).

q̈ + 2ω × q̇ =
∂Ω

∂q
(1)

where, ω = [0, 0, 1]T and q = [x, y, z]T . Ω = 1
2(x

2 + y2) + 1−µ
r1

+ µ
r2

is the CR3BP (CR3BP)
pseudo-potential obtained by augmenting the inertial potential with the potential of the rotating
frame. Lastly, r1 = ((x+ µ)2 + y2 + z2)1/2 and r2 = ((x− 1 + µ)2 + y2 + z2)1/2 locate the third
body with respect to the first and second primary, respectively.

The autonomous and conservative nature of the Hamiltonian H admits an integral of motion
deemed the Jacobi constant, defined as C = −2H = −|q̇|2+2Ω which is commonly used as a
energy-like quantity in the CR3BP. Eq. (1) admits five equilibrium points: the so-called collinear
(L1,L2,L3) and triangular (L4,L5) points based on its location in the rotating frame.? The trian-
gular points are linearly stable for a mass parameter µ less than a critical value (µc = 0.0385) and
the collinear points are always linearly unstable. The CR3BP encompasses rich dynamical and
highly nonlinear behavior, specifically in the vicinity of the equilibrium points. Next, the dynamica
equationsof m otion using the JPL Ephemeris is described.

Ephemeris Model

The ephemeris model is a high-fidelity model capable of simulating finite N-body problems, such
as discrete perturbations of trajectories in the solar system. These simulations are done through the
MATLAB-equivalent of the SPICE tool, MICE. Specifically, the ephemeris model built for the
current work will incorporate the effects of the Earth, the Moon, and the Sun expressed in the J2000
frame. It is important to note that the ephemeris model requires the formation of equations of motion
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Figure 2: The four-body problem centered about m1 where m4 is a spacecraft of arbitrary mass.

for the body of negligible mass for propagating. The database available along with SPICE offers
discrete data of the state variables (in 6 dimensions) of each of the three bodies at a given epoch. In
addition, previous mission data is also available to reproduce simulations of past NASA missions.
The following expression shows the equations of motion for this four-body problem:

ẍ = −Gm1

r314
−Gm2

(
r24
r324

+
r12
r312

)
−Gm3

(
r34
r334

+
r13
r313

)
(2)

G is the universal gravitational constant. rij indicates the vector from Body i to Body j, and this
notation holds true through the equations of motion above. m1 is the central body while m4 is the
spacecraft. When defining transfers in the lunar vicinity, the central body is the Moon. The set up
of this four-body problem is shown in Figure 2. Due to the perturbation of three primaries on the
fourth body of negligible mass, the dynamics of this body is considerably nonlinear. Ephemeris
data in this work will be used in the production of training data for the identification of time-varying
systems. The three-body and four-body dynamical systems can be used in conjunction to further
knowledge regarding the difference in dynamics when adding another primary body.

In order to propagate, and visualize the trajectories in the two models, appropriate frame conver-
sions are required between the osculating CR3BP frame and the J2000 frame. These conversions
are described below.

Frame Transformations

To quantify the difference between the two models, one must know the transformation between
them. This transformation from CR3BP to the Moon-centered J2000 frame involves the transforma-
tion of the CR3BP to the Moon-centered inertial frame. In order to identify such a transformation,
an instantaneous transformation matrix is constructed. The x-axis is defined as the unit vector orig-
inating at the Earth-Moon barycenter and in the direction of the moon. The z-axis is defined in the
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direction of the angular momentum of the Moon’s motion. In order to find the origin of the frame,
or where the Moon is in the J2000 frame, a set of ephemerides specified for the dates of propagation
is used. If rCR3BP is the position of the spacecraft in the CR3BP with respect to the Moon and
ṙCR3BP is the velocity, then the transformation is performed as shown below:

îr =
r

||r||
îh =

h

||h||
îr = îr × îh

rJ2000 =
[
îr îy îh

]
rCR3BP (3)

ṙJ2000 =
[
ωîy −ωîr 0 îr îy îh

] [rCR3BP

ṙCR3BP

]
(4)

where ω = 2π/T and T is the period of the Moon about the Earth. The transformation from the
J2000 frame to the CR3BP is done by reversing the process and transposing the matrices. Having
exained the two dynamical models, the formulation of the data-driven framework used in this work
is described next.

Setting-up the data-driven approach

In order to set-up the data-driven approach taken in this paper, the trajectories in the CR3BP and
the Ephemeris models are compared. The general framework is as follows:

Let the equations of motion for the CR3BP be written more generally as,

ẋ = f(x) (5)

where x = [x, y, z, ẋ, ẏ, ż]T in the rotating reference frame of the CR3BP. Consider the nomi-
nal trajectory propagated in the ephemeris model, denoted by xNom(t). If the true motion of the
spacecraft is given by x(t), then the true perturbation from the nominal is

δx = x(t)− xNom(t). (6)

To learn the how the motion of the spacecraft changes as a result of integration in ephemeris model,
written generally as ẋ = g(x), from the CR3BP, the perturbed motion is determined as follows:

δx̃ = xEph + δx− xCR3BP (7)

δx is applied and tracked in the ephemeris model as the true perturbed motion of the spacecraft.
This is what will be used within TVERA to learn the perturbation dynamics of the ephemeris model
from the CR3BP. This learned system will be in the form of Eq. (26). Additionally, one can
perform a first-order Taylor Series expansion of Eq. (5) about the same nominal trajectory to obtain
an approximation of the perturbation dynamics within the CR3BP,

˙δx̃ = A(x)δx̃ (8)

A(x) =
∂f

∂x

∣∣∣∣
Nom

(9)

This system can be discretized as,

δx̃k+1 = Φ(k + 1, k)δx̃ = Akδx̃. (10)
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Here, δx̃ represents the perturbation dynamics from xNom(t) when only considering the dynam-
ics of the CR3BP. This is very different from the identified system matrix obtained via ephemeris
perturbation data. The eigenvalue comparison of the system matrix defined in Eq. (10) with the
identified system matrix will be of interest in the results section.

After performing TVERA/IC, the following system will be identified:

δzk+1 = Âkδzk (11)

δxk = Ĉkδzk (12)

where Âk is the identified system matrix, Ĉk is the identified output matrix, δzk is the perturba-
tion of the identified coordinate system, which holds no physical meaning, and δx̃ is the estimated
departure motion in the true coordinate system. Once a system is identified, the perturbation dynam-
ics can be used to reconstruct the nominal trajectory in the ephemeris model during the same times
at which the original trajectory was propagated. The ability of the identified model to accurately
reconstruct this transfer trajectory will be assessed in the presentation of results.

SYSTEM IDENTIFICATION PRELIMINARIES AND METHODOLOGY

Methodology in system identification focuses on the linearization of time-invariant or time-
varying systems. For time invariant systems, a state-space representation is written as,

zk+1 = Azk +Buk, (13)

yk = Czk +Duk. (14)

The linearization is not an exact model for the system; however, it provides a good approximation
and interpretation of the effects of control on the system. For a more complicated dynamical system,
a time-invariant system may not provide the best approximation. Thus, one can create a state-space
representation in which matrices A,B,C and D are time-varying:

zk+1 = Akzk +Bkuk (15)

yk = Ckzk +Dkuk (16)

This time-varying identification process has the capability to provide a better approximation for
nonlinear systems.

In the case of the CR3BP, the dynamics of the third-body are highly nonlinear, especially those
that trek near the Moon. Thus, a time-varying system identification campaign will be done in order
to identify the perturbation dynamics of the third body relative to a nominal trajectory. In order best
identify the dynamics of the system, the third-body, or satellite of negligible mass, will not make
any self-produced maneuvers during the identification process. Therefore, the control uk will be
zero. This creates an estimated representation that quantifies the initial condition response of the
system, thus eliminating control values from the identified system:

zk+1 = Akzk (17)

yk = Ckzk (18)

The specific tools of system identification used in this work will be discussed in this section.
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Time-Varying Eigensystem Realization Algorithm (TVERA)

The Eigensystem Realization Algorithm (ERA) is traditionally used for identifying time-invariant
discrete-time systems.16 ERA utilizes system Markov parameters, which are also invariant, in
order to find the system matrices A,B,C, and D using experimental input-output data. For the
time-varying case, the Time-Varying Eigensystem Realization Algorithm (TVERA) allows for the
identification of a time-varying discrete-time system model. The traditional algorithm is presented
utilizing generalized Markov parameters calculated using Observer/Kalman Filter Identification
(OKID);? however, due to the zero-input nature of the experimental data presented for identification,
the following algorithm is modified to suit the current problem.

For this system in which only Ak and Ck are developed for a system identified with zero-input
training data, the concept of observability still applies. The observability matrix O(p) can be used
to determine the system as observable to order n if the pm× n block of O(p) has a rank of n.? The
observability matrix is set up as follows,

O
(p)
k =


Ck

Ck+1Ak

Ck+2Ak+1Ak

. . .
Ck+p−1Ak+p−2...A0.

 (19)

where p indicates the order of the observer. The Hankel matrix will not be built using generalized or
system Markov parameters as shown in traditional ERA and TVERA; instead, it will be filled with
output data from N experiments. The Hankel matrix can be set up as follows:?

H̃p,N
k =


y#1
k y#2

k . . . y#N
k

y#1
k+1 y#2

k+1 . . . y#N
k+1

...
...

. . .
...

y#1
k+p−1 y#2

k+p−1 . . . y#N
k+p−1

 (20)

The training data for each experiment will be used up to the (k + p − 1) time step in order to
sufficiently fill out the Hankel matrix. Note the parameters p and N are chosen by the user to
capture order n of the system. Using the modified Hankel matrix, one can continue with the familiar
approach of obtaining the minimum realization by taking the singular value decomposition (SVD)
of H̃k, which will isolate values similar to eigenvalues for an overdetermined system.

H̃k = O
(p)
k X

(N)
k = UkΣ

1/2
k Σ

1/2
k V T

k

=
[
U

(n)
k U

(0)
k

] [Σ(n)
k 0

0 Σ
(0)
k

][
V

(n)T

k

V
(0)T

k

]
≈ U

(n)
k Σ)k1/2Σ

1/2
k V

(n)T

k

(21)

Thus, the minimum realization of the identified discrete-time time-varying system is,

Âk = Σn1/2

k+1V
(n)T

k+1 V
(n)
k Σn−1/2

k (22)

Ĉk = E(m)TU
(n)
k Σn1/2

k+1 (23)
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X̂0 = Σn−1/2

0 U
(n)T

0 H̃0. (24)

Note m is the number of outputs or the length of yk and E(m)T =
[
Im Om . . . Om

]
. This SVD

is performed at each time step of interest and yields the state-space model,

zk+1 = Akzk (25)

yk = Ckzk. (26)

The identified state z may not have the same dimension as the original state and has no physical
meaning. The output y is the same output as the reference system.

Similarity Transformations

A time-varying transformation between one coordinate systems is written generally as,

zk = Tkxk, (27)

where, in our case, z is the identified state vector obtained using TVERA and x is the reference
state (position and velocity for this paper). The identified system’s state-space can be reqritten as,

zk+1 = T−1
k+1AkTkzk (28)

= Âkzk. (29)

Unlike in time-invariant systems, Âk is not a similarity transformation of Ak. Instead, it is a more
general topological transformation. Ak and Âk do not have the same eigenvalues at any time k.
This also implies that the system evolution takes place in different coordinates systems, Tk and
Tk+1. However, the ability to compare the eigenvalues of both matrices enhances the analysis and
evaluation of the final estimated model. Thus, Ak and Âk must undergo linearization transforma-
tions,

˜̂
Ak = O†

kOk+1Âk

= T−1
k O†

kOk+1Tk+1T
−1
k+1AkTk

= T−1
k O†

kO
†
kOk+1AkTk

= T−1
k ÃkTk.

As a result of this transformation, the system matrices Ãk and ˜̂
Ak are now similarity transformations

of one another and their eigenvalues can be compared at each time step. The linearity of the system
defines if the true and identified eigenvalues match. In the case of the dynamical system estimated
in this work, the true system is nonlinear; therefore, the eigenvalues are not expected to match.

APPLICATION TO TRANSFER TRAJECTORIES IN THE CR3BP

In this paper, the purpose of TVERA is to identify the perturbation dynamics that result from
forces besides the Earth and Moon when in cislunar space. To do this, perturbation data must
be obtained relative to a nominal trajectory within the CR3BP. Given the lack of experimental data
available, this perturbation data must be manufactured via an Ephemeris model. Once a nominal tra-
jectory within the CR3BP is defined, a set of ‘near-by’ trajectories are propagated in the Ephemeris
model and serve as the ‘training’ trajectories. The nominal trajectory transformed to the appropriate
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frame is then subtracted from these training trajectories to obtain the perturbation data set. This
data is utilized within TVERA to obtain a state-space model for the perturbation dynamics from
the CR3BP. In essence, the training trajectories define the subspace, or figuratively the ‘tube’, that
TVERA is identifying with a linear, time-varying model.

The training trajectories are chosen to be transfers from a Halo orbit about L2 to another Halo
orbit about L1 in the CR3BP. This set of transfer trajectories is shown in Figure 3(a). The process
of manufacturing the perturbation data is summarized as follows:

1. A set of 10 initial and 10 final states on both the starting L2 Halo and final L1 Halo are chosen
arbitrarily. These 10 states on each Halo are evenly spaced in time from each other.

2. Transfers are calculated for every combination of initial and final state within the CR3BP via
an impulsive velocity change. This results in 100 transfer trajectories. The nominal orbit is
then chosen to be the transfer trajectory between the 5th initial state and 5th final state (i.e. the
‘middle’ trajectory is the nominal). This leaves 99 transfer trajectories for data acquisition.

3. Propagate all 99 transfer trajectories’ initial states within the ephemeris model. This paper as-
sumes measurements of position and velocity of the spacecraft are obtained every 5 minutes.

4. Obtain perturbation data by subtracting the nominal trajectory from the ephemeris trajectories
found in the previous step

The CR3BP reference trajectories, the ephemeris trajectories, and the ephemeris perturbations are
all shown in Figure 3. Note that all states are converted back to the CR3BP rotating reference frame.

After obtaining the identified state-space model with the perturbation data, the estimated output
is compared to the reference ephemeris perturbations. The following methodology is implemented
to achieve this:

1. Randomly choose 30 of the 99 transfer trajectories as the training data set to learn the identi-
fied model with.

2. Use the other 69 trajectories as the ‘experimental’ data set to test the validity of the identified
system. Observe average replication error over time.

The average replication error across the experimental data set is shown in Figure 4 along with
the singular value plot (SVP) from the singular value decomposition within TVERA. Within the
SVP, there are 6 dominant singular values over time as expected, as this is the number of states in
real coordinate space; however, there are a few non-dominant singular values that are of unexpected
magnitudes. This most likely occurs due to the original system being highly nonlinear in nature. The
average output replication is low but increases over propagation time. From first glance, TVERA is
successfully able to capture the perturbation dynamics for the given set of trajectories.

Additionally, it is of interest to observe how the eigenvalues of the nominal trajectory’s system
matrix compare to that of the identified system matrix. This corresponds to the system matrices in
equations (10) and (11), respectively. This comparison is shown in Figure 5. The blue circles are
the nominal system matrix’s eigenvalues, the green markers indicate the identified system matrix’s
eigenvalues, and the black line is the unit circle. Clearly, the identified eigenvalues do not match the
nominal. They are both localized to the same area of the unit circle, but have extremely different
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(a) CR3BP (b) Ephemeris

(c) Ephemeris Trajectories’ perturbations over time

Figure 3: Transfer trajectories propagated in CR3BP and ephemeris
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(a) Singular Value Plot
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(b) Average Output Replication Error

Figure 4: Identified System’s singular value plot and replication error

shapes. The identified eigenvalues also seem to diverge outside the unit circle over time. Note
that Figure 5 displays the eigenvalues post transformation defined in the Similarity Transformations
Section.

Recalling the ‘tube’ the training trajectories define, a case study is performed to observe how the
size of this tube affects the validity of the identified model. The size of the tube is increased by
spacing out the 10 initial and final conditions more and decreased by spacing them out less. The
data shown previously has the states on each Halo orbit spaced out by approximately 2300 km, but
varies slightly between states since the velocity is not constant on these orbits. By spacing out the
initial and final states more, the resultant training trajectories span spaces further apart from each
other. This results in TVERA attempting to cast a large amount of propagation data with nonlinear
dynamical behavior into a linear, time-varying system. Intuitively, it is expected that the identified
model will perform worse in this case with fewer discrete samples. Conversely, crowding the states
further together is expected to decrease the tube and therefore decrease the replication error of the
identified model. Table 1 confirms this expectation. To obtain the percent errors in Table 1, TVERA
is performed 10 times with the 30 training transfer trajectories being selected randomly each time.
The percent error of the identified system’s output is then averaged over three things: the 10 system
identification campaigns, the 69 experimental trajectories, and time.

Additionally, Table 2 presents a case study for how the chosen order of the identified system
affects output replication. It is known that the true dynamics have a six degree-of-freedom state
space, but the SVP shown in Figure 5(a) does not have 6 clearly distinct singular values. Table
2 displays the trend of increasing model order decreasing the replication error. It is expected that
adding more dimension to the identified system will decrease the replication error; however, it is
unexpected that the 8th order system has a substantial decrease in replication error compared to
the 6th order system. The decrease in replication error with higher-order systems is due to the
attempts to quantify highly nonlinear effects in the region chosen for identification by capturing
these dynamics in more states with no physical meaning.
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(a) Full View of Unit Circle (b) Zoomed View

Figure 5: Comparison of Eigenvalues of Reference Trajectory and Identified System Matrix

Orbit IC Spacing (km) Average Percent Error Average Percent Error
in Position in Velocity

≈ 25489 4.22% 15.96%

≈ 4797 1.59% 3.16%

≈ 2376 1.21% 1.92%

≈ 470 0.21% 0.31%

≈ 235 0.09% 0.13%

Table 1: Case study on how training data size affects average output replication. Lower percentage
error indicates that the model has sufficiently replicated the dynamics.

Identified Model Order Average Percent Error Average Percent Error
in Position in Velocity

2 140.78% 146.79%

4 13.17% 12.85%

6 0.79% 1.27%

8 0.08% 0.12%

10 0.08% 0.11%

Table 2: Case study on how identified model order affects average output replication. Lower per-
centage error indicates that the model has sufficiently replicated the dynamics.
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As TVERA is a data-driven modeling method, the quality and quantity of data has immense im-
pact on the validity of the identified model. There are many other case studies that can be performed
including, but not limited to: sensor noise, number of training trajectories used, and different types
of trajectories within the CR3BP. Another impact regarding the ephemeris model is the dates dur-
ing which the trajectory is propagated, as this affects the positions and motion of the primaries in
the four-body problem. For an analyst using the identified model on a real system, these are all
important things to keep in mind.

CONCLUSION

Identifying a model that quantifies and linearizes the effects of more primaries on a spacecraft is
successfully and efficiently captured utilizing TVERA. The identification of a linear time-varying
model, especially with higher orders, allows one to replicate the complicated nonlinear dynamics
that result from multiple primaries’ gravitational pull. The model’s replication process is also quick
and of little computational burden. As seen through the test cases, training the model more on the
front end can improve its replication capabilities and provide a more accurate approximation for the
true perturbed dynamics. This also gives an intuitive reference to the growth of perturbations over
time due to fourth-body effects, such as the Sun in the Earth-Moon-Sun four-body problem.

The model presented in this paper has shown the effectiveness of using TVERA to identify a
linear time-varying system with initial condition response. System identification methods allow
for one to extend this model to include transient response. Thus, the identification of perturbation
dynamical models can be utilized to design strategies and employing station-keeping about the nom-
inal trajectory. The success of this model with identifying the pure perturbed dynamical behavior
of a spacecraft in many-body problems sheds light on the potentiality of this work’s extension to
utilizing model for decision-making in the mission design process.
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[10] Emilian-Ionuţ Croitoru and Gheorghe Oancea. Satellite tracking using norad two-line element set for-
mat. Scientific Research and Education in the Air Force-AFASES, 1:423–431, 2016.
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