
Chapter 13
Photometric Stereopsis for 3D
Reconstruction of Space Objects

Xue Iuan Wong, Manoranjan Majji, and Puneet Singla

Abstract The use of photometric stereopsis approaches to estimate the geometry
of a resident space object (RSO) from image data is detailed. The set of algorithms
and methods for shape estimation form an integral element of a Dynamic Data
Driven Application System (DDDAS) for enhancing space situational awareness,
where, sensor tasking and scheduling operations are carried out based upon the
RSO orbital and geometric attributes, as estimated from terrestrial and space-
based sensor systems. Techniques for estimating the relative motion between
successive frames using image features are used for data alignment before surface
normal estimation. Mathematical models of photometry and imaging physics are
exploited to infer the surface normals from images of the target object under varied
illumination conditions. Synthetic images generated from physics based ray-tracing
engine are used to demonstrate the utility of the proposed algorithms.The proposed
framework results in a estimates of the surface shape of the target object, which
can subsequently used in forward models for prediction, data assimilation and
subsequent sensor tasking operations. Sensitivity analysis is used to quantify the
uncertainty of reconstructed surface.

13.1 Introduction

Space situation awareness (SSA), including space surveillance and characterization
of all space objects and environments, is critical for national and economic security.
SSA is the ability to detect, track and characterize passive and active space objects.
In light of the large number of resident space objects, (RSOs, > 20,000) and the
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generally accepted notion that our knowledge about the number and nature of most
of the objects is severely limited to none, an unmet and urgent need exists for
accurate tracking and characterization of RSOs. In addition to orbit parameters,
RSO shape and size attributes are necessary to characterize long term evolution
of the orbital states, especially for objects in the low and mid Earth orbital regimes.
Dynamic Data Driven Application Systems (DDDAS) provide an important avenue
to monitor resident space objects, by enabling mechanisms to infer their shape,
state and number, and simultaneously providing a data driven feedback loop about
which future measurements are to be made to maintain the RSO uncertainties
in the catalog below acceptable threshold values. Such a framework comprises
of an interplay between various algorithms and methods, catering to different
SSA products. Figure 13.1 provides a notional overview of such a system called
INFOrmation and Resource Management (INFORM) conceived by the authors for
SSA applications.

An important aspect of space exploration and situational awareness involves the
characterization of surface geometry of space objects. Surface geometry estimates
are then utilized by the forward models for uncertainty propagation and subsequent
resource allocation operations for catalogue maintenance, conjunction assessment
and other SSA product generation. While astronomers are more interested in
measuring the geometry of natural space objects such as asteroid and planetoids, the
measurement of man-made objects such as spacecraft enable better characterization
of resident space objects of interest in space situational awareness applications.

Common methods applied in space object’s surface measurement are based
on stereo vision [22], laser scanning [6], and photoclinometry [26]. Traditional
methods of binocular stereopsis [11, 32] estimate the 3D shape of an object by
triangulating image feature correspondences from two or more images obtained
from viewpoints. Determination of pixel correspondences across multiple images

Fig. 13.1 INFORM framework: A DDDAS for SSA applications
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is accomplished by extracting feature points in images and matching with the aid
of descriptors. Binocular stereopsis or its multiview counterparts cannot provide
a dense surface reconstruction of bland, textureless surfaces. An example for
application of stereopsis in surface measurement is the Chinese Chang-E II lunar
probe mission [22]. A series of images taken during the lunar probe landing process
are used to recover 3D map of the landing zone. In this process, the measurements
at different position but roughly along the same direction are used in conjunction
with an adaptive Markov field algorithm [29] to recover pixel correspondences
for dense surface reconstruction. In addition to being computationally expensive,
multiview stereo techniques require high resolution imagery to establish feature
correspondences. In RSO images with ground or space based telescopes, it is
difficult to acquire images at high resolution with a finite depth of field. Light
Detection and Ranging (LIDAR) is a time of flight measurement system that scans
a collimated LASER to obtain range measurements. Ḃeing a reliable approach for
surface scanning, LIDARs are widely used in space missions. For example, the
measurement of Mercury’s terrain in MESSENGER mission were obtained through
LIDAR [6]. The need for specialized instrumentation obviates the use of LIDARs
for shape estimation of RSOs.

Photoclinometry, also known as “shape from shading” is an approach for
estimating surface shape of space objects. Unlike the other methods discussed
previously, shape from shading does not directly measure surface geometry but
estimates surface slope. The central idea behind photoclinometry is to infer shape
by exploiting the dependence of surface slope on the intensity gradient of the
surface in an image. Light reflection on a surface is governed by the reflectance
model, or photometric function, which is a function of the geometry, surface
material properties, and illumination (light polarity, wave length, incidence angle,
etc.). Surface geometry given by the gradient may be parameterized in terms of
the azimuth and polar angles with respect to a body fixed coordinate system.
Since photoclinometry has an intensity measurement for each surface point, the
estimates of surface slope from single image is an underdetermined problem. In
order to solve surface gradient from the given information, photoclinometry defines
additional constraints such as brightness and smoothness to provide regularity for
the estimation problem. Given the illumination condition and an image that captures
the reflected light of a surface, photoclinometry estimates surface gradients based on
a reflectance model. Surface gradients are then integrated to estimate local surface
geometry. The advantage of photoclinometry is the capability of reconstructing
a high resolution surface with a finite set of images of comparable resolution.
However, due to the requirement of constraint equations, photoclinometry can
only estimate local geometry of a smooth surface up to certain accuracy. Practical
applications utilize it as a source of auxiliary information for data assimilation with
other measurements of surface geometry.

Photometric stereo [15] uses image observations of an object from various
illumination conditions to deduce the shape and reflectance characteristics of the
object. Similar to shape from shading, photometric stereo infers surface gradients
from reflectance model and light measurements. In comparison to photoclinometry,
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photometric stereo does not require the definition of extra constraint equations to
make this inference. Additional image requirements made with the same relative
pose under variant illumination conditions are used in lieu of the photoclinometry
constraints. Photometric stereo provides better accuracy in estimating surface
gradients. In SSA applications, where the telescope observations of a target are
available, it becomes the method of choice for shape estimation and forms the
basis for shape estimation in the INFORM DDDAS framework. Photometric stereo
has the same disadvantage as photoclinometry in terms of the fact that only
surface gradients are estimated. Surface shape has to be estimated through spatial
integration, which suffers from quality degradation when surface discontinuities
exist. Thus for mapping applications, photometric stereo technique is less practical
as compared to traditional texture based stereo technique. Image observations of
an object also carry relative pose information. Structure from motion algorithms
provides the basis for deriving relative pose estimates from image features. To
this end, we ask the following question: given a sequence of images of a space
object, how do we utilize photometric stereo to provide high resolution surface
reconstructions along with camera relative pose estimates?

Application of photometric stereo has been confined to controlled laboratory
environment, owing to various limitations. First, photometric stereo requires a
controlled illumination environment. In various outdoor environments, lighting is
usually uncontrollable [1, 40]. In the space environment however, the Sun is the
predominant light source, with known reference location.

A key challenge associated with photometric stereo is related to establishing
pixel correspondences. Within the controlled environment where there is no rel-
ative motion between camera and object, pixel correspondences can be directly
established by comparing pixel entries uniformly across different frames. In case
of uncontrollable environment, when the object is allowed to move relative to the
camera, this assumption is violated and one cannot assign contiguous pixel patches
to belong to the same parts of the object across different frames. To solve this
problem, multi-view photometric stereo [13] introduces the concepts from the multi-
view stereo [34] to first estimate a rough surface and then iteratively optimize
a cost function based upon the error between the estimate surface normal and
depth gradient. Method proposed by Higo [14] attempts to solve for both object
shape and normal vector simultaneously by posing an optimization problem that
estimates a best fitting surface to attain to photometric consistency. Another multi-
view stereo method developed by Zhou [41] focuses on materials with isotropic
reflection (identical diffuse constant). A set of iso-depth contours [2] are first
estimated from images and the 3D position of a sparse set of surface points are
determined through the application of structure from motion methods. A complete
surface reconstruction is then accomplished by propagating depth from determined
surface points along the iso-depth contour. Passive photometric stereo [21] also
makes use of structure from motion methods to first determine set of sparse surface
points. Instead of propagating depth from surface points, they estimate a piecewise
planar surface and then iteratively corrects this surface until it converges.
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The INFORM based DDDAS approach for shape estimation is similar to Zhou’s
method [41] and passive photometric stereo [21]. It utilizes structure from motion
methods to estimate a sparse set of surface points. Estimation of an iso-contour line
is not necessary in our formulation. Further, the assumption of isotropic surface is
also relaxed. We also obviate the necessity to construct a piecewise linear surfaces
for iterative corrections. The INFORM based DDDAS method to estimate RSO
surface geometry starts by applying structure from motion methods to detect a set of
surface points in object space. This accomplishes sparse 3D reconstruction of these
surface points. Each of these surface points are projected back into images to recover
their reflected intensity along different illumination directions. Photometric stereo
is then applied to estimate their surface normals. By assuming distance between two
adjacent pixels is small, we then utilize the surface normal estimates to broadcast
depth value among the adjacent pixels with finite difference approach. The process
of propagating surface point and estimating the local normal vector is repeated until
all pixels with valid measurements are traversed. To this end, the algorithm consists
of three main steps. (1) Estimating the initial surface point with structure from
motion and feature correspondences, (2) Estimating surface normal of aligned pixel
patches using photometric stereo, and (3) Estimating dense surface using the depth
propagation algorithm. Note that the proposed method does not solve large scale
optimization problem iteratively. The surface propagation process being a local
function is amenable to parallelization. Therefore, the proposed algorithm is more
computationally efficient when compared to most of the multi-view photometric
stereo algorithms including passive photometric stereo. The proposed algorithm also
does not assume isotropic surface. Therefore, it is more general when compared to
Zhou’s method [41].

The rest of this chapter is organized as follows. Section 13.2 provides the problem
statement. Introduction to photometric stereo is given in Sect. 13.3 and a brief
summary of structure from motion method is provided in Sect. 13.4. Section 13.5
develops an algorithm to implement the photometric stereo to estimate 3D surface
of RSOs. Section 13.6 details the experiment results. Section 13.7 draws the
conclusions on the DDDAS approach.

13.2 Problem Statement and Background

Technical details of the problem statement involving photometric stereopsis are
discussed in this section. Assume that sun is the only light source and that the
reflected light from planets are neglected. Reflected light from the natural or man-
made space object is captured by the imaging system. The sensor system includes
a digital imager with appropriate optical elements for imaging process. A similar
sensor system for SSA applications is considered by Jia et al. [18]. It is of interest to
obtain a 3D reconstruction of the RSO surface from a set of images obtained under
different illumination conditions.
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Fig. 13.2 Coordinate systems and geometry of the problem

Photometric stereopsis process mainly comprises of three major components,
namely the light source, the object, and the observer. To develop mathematical
model associated with imaging process, an inertial frame denoted by I is defined
as shown in Fig. 13.2. It is assumed that a point light source with known position
with respect to inertia frame is used as the source for the imaging process. Assume
that distance between light source and object is large when compared to the size
of object, such that object’s surface is illuminated by a source at infinity along the
vector ws . The reflected light ray then arrives at object’s surface and is assumed to
have identical illumination direction over the entire workspace.

Due to the relative motion, object experiences translation and rotation relative
to the light source and the observer. Therefore, the light incidence direction with
respect to object’s surface varies from frame to frame. Assume the object is rotating
about its own center of gravity with a rotational velocity of ωo. The relative
orientation ROS is then computed by integrating the following equation with initial
attitude, ROS(t0):

ṘOS(t) = −[ωo×]ROS(t) (13.1)

[ωo×] is the cross product matrix [33]. The light incidence direction, ws , on the
object’s surface is given in the O frame by the equation:

ws(t) = RT
OS(t)

pO

|pO | (13.2)

where pO is position of the object O with respect to the source S expressed in the
object coordinate system.

Consider an observer C, orbiting the object O be described by the vector pc, the
vector wc represents the line of sight from the observer to the object. Observation
of the object is projected on a 3D image frame that is aligned with the coordinate
system that is affixed C. We assume that the sensor is located at the observer, with
its axes aligned with the coordinates of the observer.
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Fig. 13.3 Simplified model of telescopic lens system

Assume that there is a telescopic lens attached to the camera, or a camera
with a small field of view. In such optical systems such as telephoto lens, the
rays of reflected light from the object to the image are parallel to each other.
The light transport physics in the telephoto optics is markedly different from
traditional camera systems, where a pin-hole projection model is found to be
more appropriate [11]. Telephoto optics are more aptly modeled by utilizing an
orthographic projection model.

The telescopic lens model in Fig. 13.3 shows that an orthographic projection
simplifies the process of image formation as a close approximation to telescopic
lens system. To this end, we assume an orthographic projection model is suitable
for SSA applications of interest in this Chapter.

13.3 Photometric Stereo

13.3.1 Formulation

Based on the geometry of the image formation process, we now provide a brief
introduction to photometric stereopsis. Assuming a Lambertian reflectance model
for the surface [30], the relationship between incidence light direction, ws and
reflected radiance, lr is given as:

lr = kd lsnx · ws (13.3)

where nx = [nx, ny, nz] represents the surface normal vector, kd is the Lambertian
reflectance coefficient, and ls represents the incidence light radiance. Using the
Lambertian reflection model, the magnitude of reflected radiance, lr , is written as:

lr = kd ls(nxws,x + nzws,y + nzws,z), ws = [ws,x, ws,y, ws,z] (13.4)
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Dividing lr with ls we define the normalized radiance, |l| (or the gain of the
reflection process) as:

|l| = lr

ls
= kd(nxws,x + nzws,y + nzws,z) (13.5)

This can be written as:

|l| = kd [ws,x, ws,y, ws,z][nx, ny, nz]T (13.6)

Given at least three measurements of lr at different incidence illumination
directions, one can solve for components of kdn in Eq. 13.6 using a system of
linear equations. Assuming we have k number of measurements; the linear system
of equations is given as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

|l|1
|l|2
.

.

.

|l|k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ws,x,1 ws,y,1 ws,z,1

ws,x,2 ws,y,2 ws,z,2

.

.

.

ws,x,k ws,y,k ws,z,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

kdnx

kdny

kdnz

⎤
⎦ (13.7)

Equation 13.7 can be written in the matrix form as:

l = Ws[kdnx] (13.8)

where l ∈ R
k×1, Ws ∈ R

k×3. The vector [kdnx] is given by the following least
squares solution:

[kdnx] = (WT
s MWs)

−1WT
s Ml (13.9)

where M is a weight matrix. Note that the Lambertian model follows a cosine
distribution when incidence angle is less than π/2 rad. It will truncated at zero for
any incidence angle larger than π/2 rad. However, 0 intensity does not necessarily a
product of incidence angle larger or equal to π/2. It could be a result of shadowing
or masking. Therefore, we exclude measurements of zero intensity from applying
to photometric stereo.

Knowing that the normal vector is a unit vector, n is therefore normalized
direction vector of [kdn], and kd is its length. The reflectance coefficient kd can
therefore be simultaneously estimated.

n = [kdn]
|[kdn]| (13.10)

kd = |[kdn]| (13.11)
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Photometric stereo estimates the surface normal with the least squares solution.
Therefore, more consistent measurements leads to a more accurate solution. How-
ever, photometric stereo solution is undefined when the coefficient matrix Ws is of
rank less than 3. This frequently implies that all of the ws lie on the same plane.
When all the measurements are distributed on a plane, we do not have enough
information to correctly estimate the normal vector for each surface point. In the
present INFORM framework, which is a DDDAS for shape estimation of RSOs, the
principal light source is the Sun. Variation of intensity of the reflected light is caused
by the relative pose of the RSO with respect to the light source. In the event that the
relative pose is invariant through the imaging process, the coefficient matrix ceases
loses rank. Photometric stereopsis, therefore relies heavily on the observability of
the normal vector for each image pixel.

13.3.2 Modified Photometric Stereo

Solving surface normal with linear least square is a simple and elegant approach.
However, the solution of the least squares problem involves the use of redundant
parameterization of the normal vector components along with the coupling of the
reflectance coefficient. Minimal parameterization of the normal vector in terms of
azimuth angle and the polar angle is written in Eq. 13.12 as

nx = [
sin(ξ)sin(�) cos(ξ)sin(�) cos(�)

]
(13.12)

where ξ is azimuth angle, and � is polar angle measured in terms of body frame
coordinate. Using the definition of the normal vector of Eq. 13.12 and substituting
it into the Lambertian model, we get:

|l| = kd

(
ws,xsin(ξ)sin(�) + ws,ycos(ξ)sin(�) + ws,zcos(�)

)
(13.13)

We use the Gaussian Least Square differential Correction (GLSDC) algorithm [7]
as the non-linear least square solver in this problem to solve for the unknown
diffusivity constant, polar angle and azimuth angle. The state vector containing these
three unknown is defined as follows:

x = [
kd � ξ

]

An interation process for estimating the elements of the state vector x in the GLSDC
is setup to minimize the error functional

�yk = l − l̂(x̂k) (13.14)
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where vector l is intensity measurement, and l̂(x̂) is predicted intensity vector solved
with estimated parameter vector x̂. If the error vector is larger then a given threshold,
a differential correction to estimate parameters is applied as:

x̂k+1 = x̂k + �xk (13.15)

�xk = (HT
k Hk)

−1HT
k �y (13.16)

The Jacobian matrix of the Lambertian model with respect to each unknown term is
solved about the previous estimated state x̂k as:

Hk =
[

∂|l|
∂kd

∂|l|
∂�

∂|l|
∂ξ

]
x̂k

(13.17)

∂|l|
∂kd

= ws,xsin(ξ)sin(�) + ws,ycos(ξ)sin(�) + ws,zcos(�)

∂|l|
∂�

= kd(ws,xsin(ξ)cos(�) + ws,ycos(ξ)cos(�) − ws,zsin(�))

∂|l|
∂ξ

= kd(ws,xcos(ξ)sin(�) − ws,ysin(ξ)sin(�))

Differential corrections of Eq. 13.15 are applied until the norm of the error vector
�yk of Eq. 13.14 drops below a pre-defined threshold value or the error change
between two successive iterations gets small. Do note that when the polar angle is
equal to zero, term ∂|l|

∂ξ
is equal to zero as well. This indicates that we lose observ-

ability on the azimuth angle when polar angle is equal to zero. Losing observability
in azimuth angle does not affect the final solution, but causes singularity when
solving correction term with Eq. 13.16. A simple solution to avoid such a problem
is to drop the terms related to azimuth angle when polar angle equals zero:

H =
⎧⎨
⎩

[
∂|l|
∂kd

∂|l|
∂�

∂|l|
∂ξ

]
� �= 0[

∂|l|
∂kd

∂|l|
∂�

]
� = 0

(13.18)

An appropriate choice for the measurement sensitivity matrix can be when the
estimated value is sufficiently small, near convergence. Modified photometric stereo
is different from original photometric stereo in terms of usage of the non-linear
model and the parametrization of normal vector. Given identical measurement sets
and using the Lambertian surface assumption, both algorithms yield the same result.
Therefore, if computing predicted uncertainty is not required, it is unnecessary to
replace original photometric stereo with modified photometric stereo. The point of
using modified photometric stereo is to remedy the fact that normal vector directly
estimated from original photometric stereo is subject to unit vector constraint, which
makes the uncertainty calculations more complex as compared to the two angle
parametrization.
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Without explicitly relying on the surface normal’s unit vector constraint as in
traditional photometric stereo, modified photometric stereo is also compatible with
more complex photometric function such as the Lunar-Lambert model traditionally
applied in photoclinometric methods. In this Chapter, we focuses on developing
a framework that has the flexibility in choice of the photometric function, and
therefore will restrict our discussions to Lambertian model. However, we note
that proposed algorithm is also compatible with other photometric functions, and
it is expected to yield better estimation results when applying better choice of
photometric functions for various surfaces.

13.3.3 Surface Reconstruction and Depth Estimation

After solving for the normal vector for each pixel on an image, we obtain a normal
map that indicates the local normal vector. Rendering of normal map allows to
reconstruct appearance of the object at different illumination conditions under fixed
view-point direction. For INFORM framework and its utility in the DDDAS for
SSA product generation, a 3D surface map is desired. To recover a 3D surface from
normal map, a common method is to integrate the surface gradient [9, 20]. Defining
two components of the surface gradient as:

p = ∂z

∂x

q = ∂z

∂y

where p and q indicate surface gradient along x and y direction, respectively. The
normal vector is related to surface gradient through:

n = [p, q, 1]√
p2 + q2 + 1

Therefore, surface gradient may be recovered from the normal vector estimates by
making use of the following relationships:

p = nx

nz

(13.19a)

q = ny

nz

(13.19b)

Assume that position x and y of a surface point are available in the object space.
The depth of each surface point is then propagated from adjacent surface point the
using finite difference operator given as follows:
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zu,v = 1
4 ((zu+1,v − (pu+1,v+pu,v)δx

2 )

+(zu−1,v + (pu−1,v+pu,v)δx

2 )

+(zu,v+1 − (qu,v+1+qu,v)δy

2 )

+(zu,v−1 + (qu,v−1+qu,v)δy

2 ))

(13.20)

where δx and δy are the deflection along x, y directions on the surface.
If the surface is smooth, following the integrability constraint (Eq. 13.21),

propagation of depth from each direction should return identical results.

∂2z

∂x∂y
= ∂2z

∂y∂x
(13.21)

Assumption of integrability will only work on a smooth surface. In most real
objects, there are surface discontinuity that leads to violation of this assumption.
Propagating the depth value across discontinuous sections leads to erroneous surface
reconstruction. Therefore, it is essential to identify surface discontinuities before
proceeding to the integration.

Wang [38] proposes to detect discontinuities using three subsequent operations.
First, the angles between a pixel and four of its adjacent pixels are computed
to establish a threshold to detect a discontinuity. A non-photorealistic (NPR)
camera [31] (a method to re-render an image in a non-photorealistic way but
to represent a boundary or occlusion) is then applied to input images for depth
edge detection. Finally, feature detection techniques are applied on color coded
normal map (Rendering an image by coloring each element in normal vector with
RGB color) to detect discontinuity in color gradients. Once the discontinuities are
detected, reconstruction process will simply have to avoid them during integration
to resolve error caused by discontinuity.

Another solution to this problem is to integrate the normal map by imposing
integrability constraints through regularization [16]. A quadratic regularization
proposed by Horn [16] is to search for a surface that minimizes the following
function:

ε(ẑ) =
∫ ∫

[�ẑ(x, y) − [p, q]]2dxdy (13.22)

where ẑ is the estimated depth. Equation 13.22 can be approximated by the
following discrete form:

ε(ẑ)=
∑ ∑ [

zu+1,v−zu,v

δx
−pu+1,v+pu,v

2

]2

+
[
zu,v+1−zu,v

δy
−qu,v+1 + qu,v

2

]2

(13.23)

Minimizing Eq. 13.23 in Euler form by setting �ε = 0 leads to the following
expression:
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zu,v = zu+1,v + zu−1,v + zu,v+1 + zu,v−1

4
− pu+1,v + pu,v + qu,v+1 + qu,v

8
(13.24)

Since all depth values are unavailable initially, Eq. 13.24 sets initial depth to zero
and updates the estimated surface iteratively. An improved scheme of this method
to include boundary conditions, and an extension into other regularization method
is proposed by Horn [16].

Integrating surface normals to derive a depth estimate is an open research
problem in computer graphics. This is because most of the proposed methods can
not effectively deal with a surface discontinuity, due to the limited information about
an object’s surface with observations from a single view-point direction. In this
chapter, we propose to reconstruct surface by sequentially solving the photometric
stereo and normal vector integration problems. This requires accurate estimates
of both normal vector and surface point location to proceed. Our solution to this
problem depends on the fact that we have a sparse set of surface points with known
positions distributed on the object’s surface. Let each of these surface points serve
as reference points and broadcast the depth value toward entire surface. If there is
discontinuity detected along path of propagation, we will simply stop going any
further and let other broadcast processes estimate the location of surface point
from other sides of the discontinuity. This method allow us to bypass some of
the discontinuities in the surface. Although there is no guarantee that proposed
method uniformly resolves issues associated with surface discontinuities due to
the information available, this method allows us to minimize the error in surface
reconstruction.

Having introduced photometric stereo for estimation of surface normals from
a sequence of images captured under different illumination directions, we have
looked at a modified photometric stereo that allows more efficient computation of
the sensitivity terms. This forms an integral element of shape estimation methods
in INFORM SSA framework. However, until this point, we have assumed that
the relative motion between camera and object is stationary. Therefore, there is
no problem in establishing pixel correspondences. In realistic situations, relative
motion always exists and therefore establishing pixel correspondences can be fairly
difficult. In order to solve this problem, we will first introduce structure from motion
methods that allow the recovery of relative pose estimates in addition to rough shape.
Rough shape estimation process form sparse feature correspondences is known as
sparse stereo.

13.4 Photometric Stereo in Motion

To resolve the issue of relative motion between the camera and the object, we
now develop a framework that combines structure from motion algorithms with
photometric stereo. There are two stages of the photometric stereo in motion
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Fig. 13.4 A flow chart for proposed photometric stereo in motion algorithm

algorithm. An initialization stage for estimating the initial condition for the relative
pose. This is followed by a propagation stage for estimating the dense 3D surface.
During the initialization stage, Scale Invariant Feature Transformation (SIFT) [23]
is first applied to detect a set of feature points in the reference image. Each of
this feature is then tracked over subsequent sequence with the KanadeLucasTomasi
(KLT) tracker [24] to form set of feature tracks. Object space coordinates and
the orientation of each image frame with respect to reference image frame are
estimated by the application of structure from motion methods on corresponding
feature tracks. During our study, a factorization method [36] is being applied as
the structure from motion method that provide relative pose and sparse structure
estimation. Normal vector of each surface points is then estimated with photometric
stereo by using intensity of feature track as input. Set of estimated surface points
with the normal vector now defines the initial conditions for the propagation stage.

The propagation stage defines pixels with known object space coordinates and
associated normal vector as base pixels, and defines their adjacent pixels that are
without either position or normal vector as forward pixels. During propagation,
each surface point are propagated spatially to these forward pixels from the base
pixel with finite difference method that will be introduced in subsequent discussion.
Projecting propagated surface points onto each image with the orthographic model
recovers their measured reflected intensity in the image frame. Knowing the pixel
value of the projected surface point, photometric stereo is then applied to estimate
normal vector from all forward pixels. With both normal vector and location in
object space determined, a forward pixel is now updated to be a base pixel. The
propagation process is repeated until there are no valid pixels (pixel value > 0) in
the image. A flow chart summarizing this algorithm is given in Fig. 13.4.
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Note that for each frame in the image sequence, the proposed algorithm does
not require any iteration process at the pixel level or surface level. We also do not
require expensive pre-computations, therefore we conclude our proposed algorithm
yields better computational efficiency in comparison to other algorithms. Since
photometric stereo is solved explicitly at each pixel location, there no necessity to
assume an isotropic surface.

Propagation of the surface points for orthographic projected image assuming unit
distance between surface points corresponding to two adjacent pixels, required us to
assume that surface slope remain constant in between two adjacent surface points:

zu+1,v = zu,v + ∂zu,v

∂u
du (13.25)

Surface slope is recovered using sparse Eq. 13.19. During its application, the
term nz in normal vector can be close to zero and may lead to errors in computing
the correct surface slope. When this condition occurs, the propagation process is
stopped.

We assume unit distance between pixels, therefore du = dv = 1. Since
this number does not indicate real displacement between surface points, the
reconstructed surface has scale ambiguity. Proposed method can sequentially update
surface point location and surface point normal vector at each pixels from any pixel
that has valid surface point and normal vector information. Note that this process
is highly parallelizable and depth corresponding to various pixel patches may be
inferred simulataneously.

13.5 Covariance Analysis

To predict the precision of reconstruction, a commonly used technique is to evaluate
the uncertainty of estimated result by considering error and noise introduced from
different sources. The method for computing error covariance in this research is
based on sensitivity analysis of each participated algorithm.

Figure 13.5 is a roadmap for uncertainty propagation of proposed algorithms, that
form a key element of the DDDAS. It illustrates propagation of uncertainty from one
module to another. Since outputs of one algorithm form inputs to other algorithms,
the uncertainty analysis can be inferred as the sensitivity of the algorithm’s output
with respect to input uncertainty. The remainder of this section derives the sensitivity
analysis of each component, starting from raw sensor noise and ultimately compute
the error covariance of reconstructed surface. Note that the error covariance of
feature track, and Factorization’s shape and motion matrix are derived in a parallel
paper by the authors [39].
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Fig. 13.5 Covariance analysis flowchart. Starting form the error covariance of feature track(
m),
it is propagated to the covariance of camera pose (
q) and the covariance of initial surface point
(
pc

) through structure from motion method. Error covariance of the normal vector(
n) is a
function of the covariance of the measurement intensity(
l), and covariance of the camera pose.
Uncertainty of measured intensity is related to the image noise covariance(
i), and error caused
by projection of surface points on image plane. Uncertainty of surface points and normal vector is
propagated toward other surface points through surface propagation process

13.5.1 Raw Sensor Noise and the Intensity Uncertainty

Raw sensor noise includes image noise and the uncertainty associated with the
uncertainty of the camera’s intrinsic parameters. The orthgraphic projection model
has image noise alone. The perspective projection model has uncertainties associ-
ated with both image and camera intrinsic parameters. Intrinsic parameter uncer-
tainty may be obtained from the camera calibration process [4].

Image noise is measured with Immerkaer’s method [17], which estimates the
image noise variance by taking the difference of two Laplacian of the images. It
can be shown that the estimation of noise using this method involves a convolution
operation with the following kernel:

C =
⎡
⎣

1 −2 1
−2 4 −2
1 −2 1

⎤
⎦ (13.26)

A global image noise standard deviation is then computed by:

σi =
√

π

2

1

6(w − 2)(h − 2)

∑
|l(x, y) ∗ C| (13.27)
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where w and h are the width and height of the image. To obtain local intensity
variance, w and h with size of a local window are used. These calculations initialize
the covariance analysis of subsequent image operations.

13.5.2 Covariance of the Normal Vector Estimates

Using our definition of modified photometric stereo, uncertainties of the estimated
polar angle and azimuth angle are first computed. Covariance of the normal vector
is then solved using these parameters. Equation 13.16 therefore directly serves as
the sensitivity of estimated parameters, with respect to the variation of intensity.

Other than intensity, estimation of the normal vector and diffuse constant kd also
depend on light source direction. Light source direction corresponding to each frame
is estimated from image frame orientation with respect to the reference frame. Since
the light source depends on estimated value carrying uncertainty, it is also a random
variable. It is necessary to compute the sensitivity of the estimated parameter with
respect to the light source direction. Using Eq. 13.16 that solves for the sensitivity
of the parameter with respect to the intensity variation, sensitivity with respect to
the light source direction is calculated using following expressions:

∂x
∂wi

= ∂x
∂|l|

∂|l|
∂wi

(13.28)

∂|l|
∂wi

= kdn (13.29)

∂x
∂|l| = (HT H)−1HT (13.30)

where matrix H is the Jacobian matrix obtained using Eq. 13.18. Error covariance
of the estimated surface’s azimuth angle and polar angle, along with diffuse constant
are then approximated using the following expression:


x =
[
H ∂x

∂wi

] [

l 0
0 
wi

] [
HT ∂x

∂wi

T
]T

(13.31)

where 
wi
is uncertainty covariance of light source direction and 
l is uncertainty

covariance of measurement intensity. During the propagation phase, 
l will has
to consider uncertainty caused by error in estimated camera frame orientation and
error in the propagated surface depth. This is because we use this information to
acquire the intensity by the back projection technique. Sensitivity of the intensity
with respect to camera frame orientation and surface depth can be modeled by using
local intensity gradient. However, since there is no guarantee that the projection
error is small enough for approximating the local sensitivity information, we use
an unscented transform [19] to approximate the intensity measurement uncertainty.
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We assume that there is an error in estimating the camera pose and the surface
point location. It result in an error in the projection coordinates on the image
plane and then causes subsequent error in intensity measurements. Since there is an
intensity measurement corresponding to each image plane coordinate, the variance
of measurement intensity can be measured as the intensity variation within a region
bounded by an area specified by projected image plane location error. The projected
image plane location error is estimated by first selecting a set of sigma points, and
solving for their projected coordinates on the image. Bounding areas are computed
as a rectangle with length equal to maximum distance between projected sigma
points.

Light source direction is transformed by utilizing the rotational matrix R(i) at
ith frame. Since orientation of the camera is estimated through factorization, results
from out recent research provide the corresponding estimation error covariance 
q.
Where, orientation of the camera at each frame is parametrized using the Classical
Rodrigoues Parameters (CRP),q = [q1, q2, q3]T [33]. The rotation matrix in terms
of CRP is written as:

R = 1√
1 + qT q

⎡
⎣

1 + q2
1 − q2

2 − q2
3 2(q1q2 + q3) 2(q1q3 − q2)

2(q1q2 − q3) 1 − q2
1 + q2

2 − q2
3 2(q2q3 + q1)

2(q1q3 + q2) 2(q2q3 − q1) 1 − q2
1 − q2

2 + q2
3

⎤
⎦

(13.32)

Each image frame is a measurement of object at different orientation. Collecting
all n measurement frames into a vector q:

q = [q(1), q(2), . . . , q(n)] (13.33)

where q(j) indicates the CRP of the j th frame. The light source direction w(n)
i at

each frame expressed in terms of the image space coordinate using the rotational
matrix R(n) and light source direction expressed in the reference frame w

(0)
i is

written as:

w(n)
i = R(n)w(0)

i

Substituting into Eq. 13.32 and taking partial derivatives leads to:

∂wi,x

∂q
= ∂

∂q
R11(q)w0

i,x + ∂

∂q
R12(q)w0

i,y + ∂

∂q
R13(q)w0

i,z (13.34)

∂wi,y

∂q
= ∂

∂q
R21(q)w0

i,x + ∂

∂q
R22(q)w0

i,y + ∂

∂q
R23(q)w0

i,z (13.35)

∂wi,z

∂q
= ∂

∂q
R31(q)w0

i,x + ∂

∂q
R32(q)w0

i,y + ∂

∂q
R33(q)w0

i,z (13.36)
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The partial derivative of each rotation matrix elements with respect to CRPs
are computed from Eq. 13.32. Error covariance of the light source direction is then
propagated from the uncertainty of estimated camera orientation CRP using:


wi
= ∂wi

∂q

q

∂wi

∂q

T

(13.37)

where ∂wi

∂q
is a matrix with each element computed from Eqs. 13.34, 13.35, 13.36,

and 
q is computed from the uncertainty analysis of the corresponding camera
pose estimation algorithm. Since the camera orientation at different frames may
be assumed to be uncorrelated with each other, error covariance is computed
independently for each frame.

Given the uncertainty in estimated normal vector’s azimuth angle and polar
angle, the normal vector uncertainty is computed from the local sensitivity of
Eq. 13.12 as:


n =
[

∂n
∂�

∂n
∂ξ

] [
σ 2

� σ�,ξ

σ�,ξ σ 2
ξ

] [
∂n
∂�

∂n
∂ξ

]T

(13.38)

∂n
∂�

= [
sin(ξ)cos(�) cos(ξ)cos(�) sin(�)

]

∂n
∂ξ

= [
cos(ξ)sin(�) −sin(ξ)sin(�) 0

]

where σ� and σξ are the standard deviations of the estimated polar angle and
azimuth angle. Since the angles are correlated, the correlation term σ�,ξ does not
equal to zero, these elements are extracted from 
X computed by Eq. 13.31. Note
that when � = 0, we do not have an estimate of ξ and therefore we assume normal
vector in this case is not a function of ξ , such that term ∂nx

∂ξ
is equal to zero.

13.5.3 Error Covariance of the Surface Points

As outlined in the introduction, our reconstruction process uses the estimates of
the normal vectors to propagate the surface points in order to estimate a densely
reconstructed surface. Surface points propagation of orthographic configuration
only solve for depth, while coordinate along x and y direction are deterministic. The
propagation of surface depth along the x direction leads to the following equation:

zu+1,v = zu,v + nx

nz
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Sensitivity of the propagated depth is solved using:

δzu+1,v =
[

1 1
nz

−nx

n2
z

] [
δzu,v δnx δnz

]T
(13.39)

Error estimate of the depth can thus be computed using the covariance written as:

σ 2
z,u+1,v =

[
1 1

nz
−nx

n2
z

] ⎡
⎣

σ 2
z,u,v 0 0
0 σ 2

n,x σn,xz

0 σn,xz σ 2
n,z

⎤
⎦

⎡
⎢⎣

1
1
nz

−nx

n2
z

⎤
⎥⎦ (13.40)

where the elements σ 2
n,x , σn,xz, and σ 2

n,z of Eq. 13.40 are computed from estimated
normal vector error covariance calculations outlined earlier.

Estimation of the error covariance not only serves as a measure of estimation
accuracy, but may also be used as criteria for terminating the surface propagation
process. Estimated covariance is computed following the surface point location
and normal vector carried out for each pixel. Therefore, uncertainty estimates are
available during the propagation process. Since surface propagation is a numerical
integration process, error from the previous step is accumulated to subsequent
steps. In order to avoid propagating error into the future that leads to larger error,
the propagation process on a surface points may be terminated when the error
covariance exceeds a certain threshold.

13.6 Simulation and Experiment

Experimental measurement data sets to evaluate the proposed algorithms are
generated by using a ray tracer based imaging engine called Space Object Light
Attribute Rendering (SOLAR) System. This SOLAR system allows us to implement
physically plausible reflectance models of object’s surface, along with physical
optical systems for realistic camera projection and image formation emulations.
The SOLAR system is based on an in-house ray tracing engine. Inter-reflection,
light refraction, optical elements modeling, etc. are implemented as software blocks
in the renderer. Since ray tracer renders a scene by explicitly tracing the path
of light incident on each pixel of camera from the scene, it is computationally
expensive when compared to commonly used rasterization techniques applied in
computer graphics engines such as OpenGL [27] and DirectX [10]. However, ray
tracer engine is more suitable for applications, where physically consistent image
formation is important over real time rendering. Therefore, we utilize this engine to
generate measurement data for demonstration of our algorithms that utilize space
information.

Measurement data sets from two object models are synthesized for demonstration
purposes. The Itokawa asteroid model [3] is rendered to provide measurements of
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natural space object with diffuse surface. The Apollo-Soyuz [5] spacecraft model
is implemented to provide measurements of a high specular man-made object with
surface discontinuity. The Itokawa model has richer surface feature in comparison
to the Apollo model. This allows factorization method to has better performance
on Itokawa model. In case of the Apollo model, we assume the existence of
painted fiducials on the surface, such that it is able to provide some feature points
over a large but smooth surface. Each of the object models are rendered under
three different conditions to evaluate the performance of the proposed algorithms.
First, both objects are rendered with pure Lambertian model and relative motion
between camera and object is held stationary. Subsequent emulation scenario
renders both Apollo and Itokawa models using pure Lambertian model, while
camera-object relative motion is not stationary to evaluate the performance of
proposed photometric stereo in motion algorithms. For the third set of experiments,
we use the Oren-Nayar model [28] to render the Itokawa model and generate
its synthetic measurement. The Apollo model is rendering with Torrance-Sparrow
model [37]. Both of these models are considered as physically plausible reflectance
model. While the Oren-Nayar model is a diffuse reflection model for rough surfaces,
Torrance-Sparrow is a specular reflection model. This experiment is to evaluate the
performance of proposed algorithms when using Lambertian model to approximate
more complex and realistic light reflection.

A focused Newtonian telescope model without lens aberrations is implemented
in the SOLAR system as the optics attached to the camera to validate assumption of
orthographic projection.

13.6.1 Stationary Observation of Lambertian Surface

We use the case of no relative motion between the observer and the object to provide
a baseline understanding of photometric stereo performance when ideal conditions
are satisfied perfectly (i.e., stationary relative pose during measurement, light source
direction at each frame is perfectly known and object is isotropic Lambertian
surface). It is assumed that the object is located at inertia frame origin, with the
camera frame’s negative z axis pointing toward the object centroid. It is assumed that
the light source is initially oriented along the direction of wi,0 = [0, 0.707, 0.707]
and rotated about z axis for 2π rad over 10 frames.

Three out of ten measurements of Apollo model are shown in Fig. 13.6.
Since camera-object relative pose remains constant throughout measurement

sequence, we can directly implement photometric stereo to estimate normal vector
at each pixel. A collection of normal vectors for each pixel is stored as a normal
map. The normal vectors are colored by following the Blue-Green-Red (BGR) color
channel scheme for visualization purposes (Fig. 13.7). Values in x direction are
plotted as blue, while the values in y and z directions are plotted in green and
red, respectively. The intensity of each color is the magnitude of normal vector
component. Since colors do not have negative value, we plot a positive normal map
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Fig. 13.6 3 out of 10 measurements of Apollo model, (a) wi = [0, 0.707107, 0.707107], (b) wi =
[0.353553,−0.612372, 0.707107], (c) wi = [−0.612372, 0.353553, 0.707107]

Fig. 13.7 A comparison of true positive normal map and photometric stereo estimate positive
normal map

Fig. 13.8 A comparison of true negative normal map and photometric stereo estimate negative
normal map

that plots only the positive component in a normal vector, and a negative normal
map that plots only the negative components of a normal vector (Fig. 13.8).

For better comparison between estimate and true normal map, we define an
error function that governs the error between the two normal vector as 1 minus
the absolute value of dot product of estimate normal vector, nest and true normal,
nt :

e = 1 − |nest · nt | (13.41)

Error of estimated normal vector computed by Eq. 13.41 are visualized as a color
map in Fig. 13.9. A visual inspection of the error color map shows that the maximum
error is about 0.08 located at regions near the edges of the object. It also shows that
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Fig. 13.9 Normal vector estimation error map

Fig. 13.10 Estimated object surface through normal map integration at different view directions

the surfaces that are oriented along the camera bore-sight have small errors. This
experiment result demonstrates that under the ideal conditions, photometric stereo
is able to provide good estimates of the surface normal.

Estimation of surface geometry in this experiment is accomplished by integrating
surface normal along the surface, starting from an arbitrary initial point with a
positive surface depth value.

Figure 13.10 shows estimated surface for the various view of the Apollo model.
From these plots, we can infer that the surface estimated from the normal map
integration can provide accurate results in areas with smaller surface discontinuities.
Automated means of detecting continuous regions in an image remains a research
challenge.

Following a similar procedure, we have the estimated normal map for Itokawa
model. The normal maps are shown in Figs. 13.11 and 13.12. Normal vector error
map is plotted in Fig. 13.13. It is evident that the error levels are equivalent to those
of the Apollo model.

Figure 13.14 are snapshots of various views of the estimate surface of Itokawa
computed by integrating surface normal map. The estimate surface is poorer than
that of the Apollo due to the lack of observability of surface normal at different
locations along the edge. On the other hand, the estimated Itokawa surface does not
suffer from errors caused by surface discontinuity.
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Fig. 13.11 A comparison of true positive normal map and photometric stereo estimated positive
normal map

Fig. 13.12 A comparison of true negative normal map and photometric stereo estimated negative
normal map

Fig. 13.13 Normal vector estimation error map
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Fig. 13.14 Estimated object surface through normal map integration along different view points

Fig. 13.15 3 out of 50 measurements of Apollo model in motion. (a) wc = [0, 0.0,−1], (b) wc =
[−0.1508,−0.1431,−0.9781], (c) wc = [0.1525, 0.1025,−0.9830]

Experimental results of this section show that traditional photometric stereo is
able to provide good estimates of the surface normal. Surface geometry is then
estimated by integrating the estimated surface normal to produce a model for surface
geometry.

13.6.2 Observation of Lambertian Surface from
Non-stationary View Point

When relative motion between the camera and object is no longer stationary, tradi-
tional photometric stereo is not directly applicable. This experiment is to evaluate
performance of our photometric stereo in motion approach under assumption that
the surface reflectance is Lambertian in nature.

Figure 13.15 show 3 out of 50 measurements of Apollo model. Illumination
direction is aligned with view direction in this case because light source is assumed
to be affixed in the camera frame. Note that this assumption is not necessary and that
the light source direction is free to move around. Set of feature points extracted by
SIFT and tracked by KLT tracker in this case are plotted as yellow dots in Fig. 13.16.
The red ellipse located at the end of each feature track in Fig. 13.16 are estimated
feature track error covariance bound of last feature point in a track. Theses are
computed using methods developed by the authors in a related recent research [39].

Feature tracks are supplied to the Factorization algorithm for computing relative
pose of each frame. To demonstrate the performance of Factorization, a comparison
of estimated orientation with respect to the true camera orientation is shown in
Fig. 13.17. Each red and blue dot plotted in Fig. 13.17 indicate the view direction
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Fig. 13.16 Feature tracks as input to structure from motion method, red ellipse at the end of each
track are estiamted uncertainty covariance bound of feature track

Fig. 13.17 A comparison of
factorization estimated
camera orientation (red dot)
and true camera
orientation(blue dot) after
translated into view direction
relative to object

from camera to the object plotted in object fixed frame. This plot shows that factor-
ization method is able to estimate camera orientation with reasonably accuracy.

Using the initial condition provided by the Factorization method, we use the
method developed in this work to estimate a surface and normal map for the Apollo
model. Estimation results are rendered in Figs. 13.18, 13.19, and 13.20.

The estimated surface in Fig. 13.18 shows that proposed method can provide a
reasonable estimate of the surface geometry. Estimation errors incurred in Fig. 13.18
are relatively large when compared to result in Fig. 13.10. This is attributed to the
fact that the proposed method works under the non ideal conditions, where the
original photometric stereo are not applicable. The reconstructed surface also shows
that the proposed method is able to resolve the surface discontinuity issue by making
use of additional information from motion alignment of matching pixel patches.
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Fig. 13.18 A side to side comparison of estimated space craft surface(front) to true object
surface(back). A scaling parameter determined empirically is applied to the estimated surface so
that we can compare the estimated surface and true surface in same scale

Fig. 13.19 A comparison of true positive normal map and estimated positive normal map of
spacecraft model

Fig. 13.20 A comparison of true negative normal map and estimated negative normal map of
spacecraft model
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Fig. 13.21 Estimated normal vector uncertainty standard deviation (a) direction map (b) magni-
tude map of spacecraft model

A comparison of estimated normal vectors in Figs. 13.19 and 13.20 demonstrates
that estimation of surface normal is generally accurate over a large fraction of the
surface. Large errors in surface normal estimation occur near the edge of surface
segments. This is caused by the error in object points to image projection as the
variation of intensity near such region are large, owing to poor observability of depth
in orthographic projection.

In addition to the estimation of surface geometry and surface normals, we also
derive methods to compute the covariance associated with both the estimates.
For visualization purposes, estimation error variance is first translated to standard
deviation, and plotted as a color map. In case of the normal vector uncertainty,
a direction map and a magnitude map are plotted separately. The direction map
indicates the distribution of error in x, y, and z direction within a normal vector.
A magnitude map is used to indicate the magnitude of uncertainty of corresponded
pixel. Since surface depth is a scalar variable, the surface depth standard deviation
map only plots the estimated standard deviation of surface depth value.

Figure 13.21 shows the estimated standard deviation of the estimated normal
vector. The direction map indicates that a large fraction of the uncertainty in
estimated normal vector is distributed along the direction with minimum magnitude.
While the magnitude map indicates large estimation error are concentrated around
region closed to the edge. This is equivalent to loss of observability and similar
to Fig. 13.22. Figure 13.22 is the estimated standard deviation of the surface depth
estimates, patch like distribution of surface depth uncertainty correspond to pixel
patches used by the depth estimation algorithm. A poor starting solution depth
therefore is propagated to the patch that is computed from that solution.

After examining the performance of the proposed algorithm on a man-made
object, we now repeat the experiments on Itokawa asteroid that represents natural
space object without surface discontinuity. Three out of a total of 50 input images
for Itokawa experiment are shown in Fig. 13.23. Estimated Itokawa surface is shown
in Fig. 13.24.

Comparing the estimated surface of Itokawa through proposed method in
Fig. 13.24 and from original photometric stereo in Fig. 13.10, we see that estimation
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Fig. 13.22 Estimate surface depth standard deviation map of spacecraft model

Fig. 13.23 3 out of 50 measurements of Itokawa model in motion. (a) wc = [0, 0.0,−1], (b) wc =
[−0.1508,−0.1431,−0.9781], (c) wc = [0.1525, 0.1025,−0.9830]

result in case of the motion stereo algorithm is actually better. This can be attributed
to the use of large number of observations that yield better observability and
improved imaging geometry. This experiment also shows that the concept of using
multiple initial surface points estimated from structure from motion method, and
then propagated for constructing a dense surface with photometric stereo is indeed
feasible.

A comparison of estimation results in Figs. 13.25 and 13.26 shows that the
estimation of normal vector with proposed approach fairs better for semi-convex
geometries that have contiguous regions. Estimated uncertainties result are graphi-
cally rendered in Figs. 13.27 and 13.28.

This set of experiments demonstrate the application of the proposed algorithm in
estimating the surface geometry of both man-made and natural objects. Experimen-
tal results indicate that performance of proposed approach on a continuous surface
is better than performance on a surface with discontinuities. These algorithms
demonstrate optimism as elements of the INFORM framework to derive RSO shape
estimates as a part of the DDDAS for SSA applications.
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Fig. 13.24 A side to side comparison of empirically scaled Itokawa surface estimates (front) with
true object surface (back)

Fig. 13.25 A comparison of true positive normal map and estimated positive normal map of an
asteroid model

Fig. 13.26 A comparison of true negative normal map and estimated negative normal map of an
asteroid model
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Fig. 13.27 Standard deviation of the estimated normal vector (a) direction map (b) magnitude
map

Fig. 13.28 Estimate surface depth standard deviation map of asteroid model

13.6.3 Observation of Non-Lambertian Surface from
Non-stationary View Point

After demonstrating the utility of the proposed algorithms in reconstructing the
Lambert surface, we now move on to evaluate the performance of proposed
algorithm in reconstruction of non-Lambertian surface.

Man-made space objects are usually coated with materials that have high
reflectance in order to reflect heat from radiation. Based on this fact, it is natural
to assume that most of the man-made space objects have high specular reflection.
Therefore, their reflectance should be modeled with specular reflection models. The
Torrance-Sparrow model is considered a physics based specular reflectance model,
although it is not as comprehensive as other methods such as HTSG model [12].

Given a set of measurements of Apollo model rendered by Torrance Sparrow
model in Fig. 13.29, it is desired to estimate the shape of the object of interest. Direct
application of the photometric stereo on measurements with specular component
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Fig. 13.29 3 out of 100 measurements of Apollo model in motion, (a) specular component is
clearly brighter than diffuse component. (b–c) specular component is not captured because camera
direction is off from specular peak direction

Fig. 13.30 A side to side comparison of empirically scaled estimate Apollo surface (front) to true
object surface (back) with measurement rendered with Torrance Sparrow model

will result large error in the estimated normal vector. Therefore, measurements with
specular components will need to be removed before the estimation of the normal
vector. Since the specular reflection is concentrated around specular peak direction,
when there are sufficient number of measurements, the specular component can
be removed as outliers. In this experiment, we use RANdom SAmple Consensus
(RANSAC) algorithm [8] to search for outlier measurements with specular com-
ponent and reject them. A downside of using RANSAC is that large amount of
measurements are required in order to detect specular reflection. Therefore, we
increase the number of image measurements to 100 frames in this experiment.
Once the measurements with specular reflections are removed, remaining images
are assumed to be purely diffuse and photometric stereo in motion algorithm is
applied to estimate the surface geometry.

Figures 13.30, 13.31, 13.32, 13.33, and 13.34 are the depth estimation results
of the Apollo model from measurements with specular reflection. Reconstruction
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Fig. 13.31 A comparison of true positive normal map and estimated positive normal map of
spacecraft model rendered with specular reflection

Fig. 13.32 A comparison of true negative normal map and estimated negative normal map of
spacecraft model rendered with specular reflection

Fig. 13.33 Standard deviation of the estimated normal vectors uncertainty (a) direction map
(b) magnitude map if spacecraft model with specular reflection surface

shows that the estimation result is relatively poor in comparison to the estimates
obtained from the idealized case where the reflectance is a pure Lambertian surface.
This is because RANSAC cannot remove all the measurement hypotheses that
have specularity. Developing a better method to remove specular reflection has
been a active study in the research community. Methods such as SUV color
space transform [25] and specular free image [35] are developed for this purpose.
However, most of these methods require color information. Man-made spacecraft
are typically textureless and theses methods are not directly applicable. Currently,
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Fig. 13.34 Estimate surface depth standard deviation map of spacecraft model with specular
reflection

Fig. 13.35 3 out of 50 measurements of Itokawa model rendered by Oren Nayar model

removing specular with RANSAC remains the most popular method that applicable
to general surface.

Natural space objects such as asteroid generally have a relatively diffuse surface,
while carrying weak directional reflection properties like specular reflection. Oren-
Nayar model [28] is a diffuse model that is developed to model such weak
directionally diffuse reflection on a rough surface. The Lambertian approach can
serve as an approximation to Oren-Nayar surface when surface roughness is
removed. Therefore, we are directly supplying measurement generated from Oren-
Nayar model into proposed algorithm for surface estimation.

Figure 13.35 shows a subset of input images for Itokawa model rendered from
the Oren-Nayar model. Estimation result obtained by using this data set is shown in
Figs. 13.36, 13.37, 13.38, 13.39, and 13.40.

Results of estimation of the surface of the Itokawa model rendered with
Oren-Nayar reflectance model show that its estimation accuracy is as good as mea-
surement rendered with Lambertian model. The fact that the model reconstruction
operations using the algorithms developed here are modestly robust to reflectance
model forms a basis of optimism towards the applicability of the proposed approach
to reconstruct the surfaces of weekly specular object from image data. Since the true
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Fig. 13.36 A side to side comparison of empirically scaled Itokawa surface estimates (front) with
true object surface (back) with measurement rendered with Oren-Nayar model

Fig. 13.37 A comparison of true positive normal map and estimated negative normal map of
asteroid model rendered with Oren-Nayar model

reflectance characteristics are generally unknown, the approaches discussed here-in
as a part of the DDDAS for SSA applications seems promising.

13.7 Conclusion

A photometric stereopsis in motion approach for space object dense surface recon-
struction based on structure from motion and photometric stereo is discussed in this
Chapter. It forms an integral component of the RSO shape estimation algorithms
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Fig. 13.38 A comparison of true negative normal map and estimated negative normal map of
asteroid model rendered with Oren-Nayar model

Fig. 13.39 Estimated normal vector uncertainty standard deviation (a) direction map (b) magni-
tude map of asteroid model rendered with physical reflection model

Fig. 13.40 Estimate surface depth standard deviation map of asteroid model with physical
reflection
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in an innovative INFORM framework that is DDDAS for SSA applications.
Emulation experiments utilizing two different geometry models, each representing
a man-made and natural RSO are used to demonstrate the utility of photometric
stereopsis algorithms under non-ideal illumination, surface reflectance and relative
motion conditions. Experimental results show that the algorithms discussed are
capable of providing valid surface geometry estimates even when the assumption
of diffuse surface is not exactly valid. It is shown that the use of photometry
for shape estimation provides an alternative to textured based stereopsis solutions
that fail to produce any reconstruction in bland surfaces. Experiment results also
demonstrate that the concept of using structure from motion for initialization, and
then iteratively switching between surface propagation and photometric stereo is
a feasible approach for dense surface reconstruction when relative motion exists
between the object and the observer.
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